Start of section
Production, amateur Radio amateurs Aircraft model, rocket-model Useful, entertaining |
Stealth Master
Electronics Physics Technologies Inventions |
Secrets of the cosmos
Secrets of the Earth Secrets of the Ocean Tricks Map of section |
|
Use of the site materials is allowed subject to the link (for websites - hyperlinks) |
Navigation: => |
Home / Patent catalog / Catalog section / Back / |
INVENTION
Patent of the Russian Federation RU2280925
SEPARATION OF GASES WITH HIGH ENERGY EFFICIENCY FOR FUEL ELEMENTS
The name of the inventor: KIEFER Bowie G. (CA); CONNOR Denis J. (CA); HUNTER Carl F. (CA)
The name of the patent holder: QUESTEYR TECHNOLOGIES INC. (CA)
Address for correspondence: 129010, Moscow, ul. B. Spasskaya, 25, p. 3, LLC "Law firm Gorodissky & Partners", Pat. SA Dorofeev, registration number 146
Date of commencement of the patent: 2001.10.26
The invention relates to the field of electrical engineering, in particular to an electrical current generating system that comprises a fuel cell operating at a temperature of about 250 ° C, selected from molten carbonate or solid oxide. The system that generates electricity based on fuel cells, especially high-temperature fuel cells, contains an adsorption module using a pressure difference to increase the fuel cell's fuel efficiency. The technical result of the invention is to increase the efficiency of conversion of thermal energy into electricity by developing a method for maintaining a high hydrogen concentration at the anode and a high concentration of oxygen at the cathode while effectively transferring hot carbon dioxide from the anode to the cathode.
DESCRIPTION OF THE INVENTION
The present disclosure relates to a fuel cell-based power generation system that uses pressure differential adsorption to increase the energy efficiency of fuel cells, especially high-temperature fuel cells such as fuel elements from molten carbonate and solid oxide.
This application claims the effect of the invention of Canadian patent application No. 2322572 filed on October 30, 2000, and US provisional application No. 60 / 323,169 filed September 17, 2001, the disclosures of which are incorporated herein by reference.
Fuel cells provide a source of electrical current that is safe from an environmental point of view. One type of high-temperature element for power generation, in particular, provided for stationary power plants, is a heat-emitting fuel cell made of molten carbonate (TERC). The TERC includes an anode channel for receiving a hydrogen-containing gas (or a combustible fuel gas that reacts in the anode channel to generate hydrogen by steam-reforming reactions and water-gas conversion), a cathode channel for receiving an oxygen-containing gas stream, a porous matrix comprising an electrolyte from a molten Carbonate, which separates the anode channel from the cathode channel. Oxygen and carbon dioxide in the cathode channel react, forming carbonate ions, which cross the electrolyte to react with hydrogen in the anode channel, forming an electron flow. As hydrogen consumption takes place, the conversion of carbon monoxide under the influence of steam leads to the formation of additional hydrogen. Carbon dioxide and water vapor are obtained in the anode channel by oxidation of fuel elements and reduction of carbonate ions from the electrolyte. The typical operating temperature of the fuel cells from the molten carbonate is from about 600 to about 650 ° C.
Another type of high-temperature fuel cell is a fuel element of solid oxide (TETO). TETO includes an anode channel for receiving a stream of hydrogen-containing gas (or a combustible gas that reacts in the anode channel to generate hydrogen by steam-reforming reactions and water-gas conversion), a cathode channel for receiving an oxygen-containing gas stream and a solid electrolyte, which is a ceramic membrane , Which transmits oxygen ions and separates the anode channel from the cathode channel. The oxygen in the cathode channel dissociates into oxygen ions, which cross the electrolyte to react with hydrogen in the anode channel, forming an electron flow. As hydrogen is consumed, carbon monoxide can be oxidized immediately or its conversion can occur under the influence of steam, which leads to the formation of additional hydrogen. Carbon dioxide and water vapor are obtained in the anode channel by oxidation of fuel elements. The typical operating temperature of the solid oxide fuel cells is from about 500 ° C to about 1000 ° C.
Except in the rare cases where hydrogen (i.e., obtained during the purification or chemical treatment of waste gases or generated from renewable energy through the electrolysis of water) can directly serve as fuel, hydrogen must be generated from fossil fuels using an appropriate treatment system Fuel. For stationary power plants, it is preferable to generate hydrogen from natural gas by conversion with steam or partial oxidation to produce a "syngas" (synthetic gas) containing a mixture of hydrogen, carbon monoxide, carbon dioxide, water vapor and some unreflected Methane. As hydrogen is consumed in the anode channel of the fuel cell, most of the carbon monoxide reacts with steam through the conversion of water vapor, resulting in more hydrogen and carbon dioxide. Other carbonaceous starting materials (i.e., heavier hydrocarbons, coal or biomass) and can be reacted with oxygen and steam to generate syngas by partial oxidation, gasification or autothermal conversion. Fuel cells can also work on hydrogen or "syngas", obtained outside the reactions.
A huge advantage of TEC and TETO systems is that their high operating temperature contributes to the close thermal integration of the fuel cell and the fuel processing system. High temperatures also allow eliminating the use of noble metal catalysts required for fuel cells with lower temperatures.
Prior art TEC systems have been severely constrained by their operating high temperatures (reaction temperatures) and their inherent need to deliver carbon dioxide to the cathode, removing it from the anode.
In the TETO systems of the prior art, even more critical temperature conditions are encountered, and they have the drawback of degrading the cell stresses at high temperatures under normal operating conditions.
The lower heat of combustion usually determines the energy (the change in the enthalpy of the reaction), which can be generated from the oxidation of this fuel. The electrochemical energy that can be produced by an ideal fuel cell is, however, a reaction of one type of free energy into another, but it is not as significant as a change in the enthalpy. The difference between the change in enthalpy and the transformation of free energy is the product of the change in the entropy of the reaction, multiplied by the absolute temperature. This difference increases at higher temperatures, so that high-temperature fuel cells naturally converts the lower fraction of fuel energy into electrical energy with high efficiency, while a large fraction of the fuel energy can be obtained only as heat that must be converted into electrical energy Cycle of additional thermodynamic power generation with the use of waste heat (ie steam turbine or gas turbine power plants), with a lower efficiency.
The accumulation of reaction products (carbon dioxide and water vapor) at the anode of the fuel cell is counteracted by the electrochemical reaction, so the amount of free energy decreases. The increased partial pressure of oxygen and carbon dioxide above the cathode and the increased partial pressure of hydrogen over the anode contribute to the development of the reaction, so that the free energy increases. Unfortunately, the reaction depletes oxygen and carbon dioxide in the cathode channel and depletes hydrogen in the anode channel, dramatically increasing the counterpressure of carbon dioxide in the anode channel. Therefore, the conversion of free energy decreases, directly reducing the voltage of the fuel cell batteries. This reduces the electrical efficiency of the system, leading to an increase in heat, which must be converted, with an even less efficient, cycle of additional thermal generation of electricity using waste heat.
The transformation of free energy is simply the product of the electromotive force ("E") of the element and the charge transferred per mole by the "2F" reaction, where the exponent equal to two reflects the valence of the carbonate ion. The subsequent Nernst equation for the TERC expresses the above-described dependence of the electromotive force on the partial pressures of electrochemical reagents in the anodic and cathodic channels, where the standard electromotive force ("E") refers to all components under standard conditions, with water as steam.
Prior art TEC systems do not provide any satisfactory solution to this problem, which seriously hinders the achievement of a common efficiency. The solution to the problem is to develop a method for maintaining a high hydrogen concentration at the anode and a high concentration of oxygen at the cathode while effectively transferring hot carbon dioxide from the anode to the cathode. Despite repeated attempts to develop an efficient carbon dioxide transfer technology that is compatible with the working conditions of the TERC, none of these attempts has been successful.
The adopted method of supplying carbon dioxide to the cathode of the TERC was to burn the fraction of the exhaust gas of the anode (including unreacted hydrogen and other fuel components) to provide carbon dioxide mixed with water vapor and nitrogen mixed with additional air supplying oxygen at the cathode. This principle has serious limitations. For relatively efficient generation of electrochemical energy, it is not possible to provide even an amount that exceeds the initial amount of fuel, since additional combustion is required, the heat of which can be beneficially absorbed only by the cycle of additional generation of electricity using waste heat. In addition, the oxygen / nitrogen ratio of the cathode gas is even more diluted than the ambient air, which reduces the cell voltage and thus transfers the additional load of the generated energy less efficiently to the thermal power generation station using the waste heat.
The subsequent Nernst equation for TETO expresses the dependence of the electromotive force on the partial pressures of the electrochemical reagents in the anode and cathode channels with the simplifying assumption that the CO is converted into water vapor conversion reactions. The greatest dependence, naturally, is manifested at the highest operating temperatures (reaction temperatures) of TETO.
Adsorption systems using differential pressure (ARD) are one way to provide gases to a fuel cell. Differential pressure adsorption systems and vacuum pressure swing adsorption systems separate the gas fractions from the gas mixture by coordinating the pressure cycles and changing the flow direction above the adsorber or adsorbent bed that adsorbs the most readily adsorbed gas component with respect to the gas component adsorbed with Less ease. The total pressure of the gas mixture in the adsorber increases when the gas mixture flows through the adsorber from one end to the other end and decreases as the gas mixture flows through the adsorbent from the second end back to the first end. When the adsorption cycle using the pressure difference is repeated, the component adsorbed with less ease is concentrated near the second end of the adsorber, and the most readily adsorbed component is concentrated near the first end of the adsorber. As a result, the "light" product (the gas fraction depleted in the most readily adsorbed component and enriched in the component that is adsorbed with less ease) comes from the second end of the adsorber, and the "heavy" product (the gas fraction enriched in the most intensely adsorbed component) comes from The first end of the adsorber.
However, in a conventional system where adsorption using a pressure difference or vacuum adsorption using a pressure difference is employed, two or more fixed adsorbers operate in parallel with a plurality of two-way directional valves (distributors) at each end of each adsorber to connect the adsorbers in an alternating sequence with the pressure sources and Taps. This system is often cumbersome and expensive to implement due to the large size of the adsorbers and the complexity of the required equipment of the distributors. Valves may not work at the operating temperatures of the fuel cell (fuel cell from molten carbonate). In addition, the conventional adsorption system using a pressure difference makes inefficient use of the applied energy due to irreversible expansion of the gas, when during the adsorption process using the pressure difference on the adsorbers, the pressure rises or pressure is released. Conventional ARD systems are voluminous and heavy due to the low frequency of cycles and, consequently, the large structure of the adsorbent. In addition, prior art ARD techniques may not be capable of operating at such a high temperature. In addition, adsorbents that can separate carbon dioxide in the presence of water vapor must be provided for any process of anode gas separation by adsorption using a pressure difference occurring at an elevated temperature.
Descriptions of steam-gas power plants with a cycle of a gas turbine combined with a fuel cell system have been proposed. In addition, the published international patent application (on general terms) of PCT No. WO 00/16425 provides examples of how pressure-adsorption plants using differential pressure can be integrated with gas turbine power plants or fuel cell power plants having an auxiliary gas turbine unit.
The next problem, to which the described systems and processes relate, is the overcoming of global warming caused by the common emissions of carbon dioxide from electricity generating plants operating on fossil fuels.
The described systems and processes concern the following problems related to environmental protection:
A. Sending concentrated CO 2 for its elimination and destruction.
B. Essentially complete elimination of toxic NOx emissions by eliminating combustion in the presence of nitrogen.
B. high overall efficiency (efficiency) to achieve the most acceptable use of energy resources.
The described power generation systems based on the fuel and power station or TETO relate to the elimination of the disadvantages of the prior art, mainly for the purpose of regulating the concentration of reagents to improve performance and economy, and in TECC systems for transferring carbon dioxide from the anode to the cathode, increasing the energy yield.
According to a first aspect of the present invention, there is provided a system for generating an electric current comprising: at least one fuel cell operating at a temperature of at least about 250 ° C; At least one gas system selected from a hydrogen-containing gas separation system or an oxygen-containing gas supply system connected to a fuel cell, wherein the hydrogen-containing gas separation system or the oxygen-containing gas supply system includes at least one device selected from a compressor Or a pump, the hydrogen-containing gas separation system or the oxygen-containing gas supply system comprising an adsorption module using a pressure difference; And a drive system for a compressor or pump that includes means for regenerating energy from at least one of a hydrogen-containing gas separation system, an oxygen-containing gas supply system, or a heat of a fuel cell.
Preferably, the fuel cell is a molten carbonate fuel cell or a solid oxide fuel cell.
Preferably, the fuel cell operates at a temperature of at least about 600 ° C.
Preferably, the energy regenerating means comprises at least one system selected from a gas turbine, heat exchanger or Stirling engine.
Preferably, the pump is a vacuum pump.
According to a second aspect of the present invention, there is provided an electrical current generating system comprising: at least one fuel cell operating at a temperature of at least 250 ° C; At least one gas system selected from a hydrogen-containing gas separation system or an oxygen-containing gas supply system connected to the fuel cell, the hydrogen-containing gas separation system or the oxygen-containing gas supply system comprising an adsorption module using a pressure difference; And a gas turbine system connected to a hydrogen-containing gas separation system or an oxygen-containing gas supply system in which the gas turbine system operates from energy recovered from at least one of the hydrogen-containing gas separation system, the oxygen-containing gas supply system or the heat of the fuel cell.
Preferably, the pressure difference adsorption module is configured to supply a hydrogen-containing gas to the fuel cell, wherein the pressure difference adsorption module includes a first adsorbent and at least one second material selected from a second adsorbent, a steam reforming catalyst Or a water gas shift reaction catalyst.
Preferably, the first adsorbent advantageously adsorbs carbon dioxide as compared to water vapor.
Preferably, the first adsorbent comprises an alkali activated material and the catalyst comprises a Cu-ZnO, a transition metal carbonyl complex or a catalyst comprising a metal from a group of transition metals introduced into the zeolite cell.
Preferably, the gas turbine system is further connected to at least one device selected from a compressor, pump or auxiliary device.
According to a third aspect of the present invention, there is provided a system generating an electric current comprising: at least one fuel cell selected from a fuel cell of molten carbonate or a fuel cell of solid oxide; At least one gas system selected from a hydrogen-containing gas separation system or an oxygen-containing gas supply system connected to the fuel cell, the hydrogen-containing gas separation system or the oxygen-containing gas supply system comprising an adsorption module using a pressure difference; And a gas turbine system connected to a hydrogen-containing gas separation system or an oxygen-containing gas supply system in which the gas turbine system operates from energy recovered from at least one of the hydrogen-containing gas separation system, the oxygen-containing gas supply system or the heat of the fuel cell.
According to a fourth aspect of the present invention, there is provided an electrical current generating system comprising: at least one fuel cell operating at a temperature of at least about 250 ° C; At least one gas system selected from a hydrogen-containing gas separation system or an oxygen-containing gas separation system connected to a fuel cell in which the hydrogen-containing gas separation system is configured to generate a first exhaust gas stream, the oxygen-containing gas separation system being configured to generate A second exhaust gas stream; And a gas turbine system connected to at least one of a hydrogen-containing gas separation system or an oxygen-containing gas separation system, the gas turbine system receiving at least one of a first exhaust gas stream or a second exhaust gas stream.
Preferably, the fuel cell operates at a temperature of at least about 600 ° C.
Preferably, the hydrogen-containing gas separation system comprises a first adsorption module, and the first exhaust gas stream is enriched in carbon dioxide.
Preferably, the system further comprises a combustion chamber that forms a first inlet for receiving the first exhaust gas stream and an outlet for removing the combustion product gas stream.
Preferably, the system further comprises a first pipe through which the combustion chamber outlet and the cathode inlet formed by the fuel cell are fluidly communicating, a second pipe through which the cathode exit port formed by the fuel cell and the gas turbine system communicate fluidly, and, At least one heat exchanger accommodating at least a portion of the first pipe and at least a portion of the second pipe.
Preferably, the system further comprises at least one pipe through which the combustion chamber outlet and the gas turbine system communicate fluidly.
Preferably, the gas turbine system includes at least one device selected from a compressor and a vacuum pump.
Preferably, the first adsorption module comprises a rotating adsorption module using a pressure difference.
Preferably, the gas turbine system includes at least one device connected to a rotating adsorption module using a pressure difference, wherein the device is selected from a compressor and a vacuum pump.
According to a fifth aspect of the present invention, there is provided an electrical current generating system comprising: at least one fuel cell selected from a fuel cell of molten carbonate and a solid oxide fuel cell; At least one adsorption module using a pressure difference that is configured to generate a gas stream enriched in oxygen to supply a fuel cell and a waste gas stream of the heavy product; And at least one vacuum pump connected to the adsorption module using the pressure difference to extract the gas stream of the heavy product.
According to a sixth aspect of the present invention, there is provided a system generating an electric current comprising: an oxygen-containing gas source; At least one hydrogen-containing gas separation module that is configured to generate a hydrogen-enriched gas stream and a gas stream enriched in carbon dioxide, the hydrogen-containing gas-containing separation unit comprising an adsorption module using a pressure difference; A combustion device for producing a gas stream of a combustion product from an oxygen-containing gas and a gas stream enriched in carbon dioxide; And at least one molten carbonate fuel cell having a cathode inlet for receiving a combustion product gas stream and an anode inlet for receiving a gas stream enriched in hydrogen.
Preferably, the pressure difference adsorption module is connected to an oxygen-containing gas source and configured to generate a gas stream enriched in oxygen to be supplied to the combustion apparatus.
Preferably, the molten carbonate fuel cell has an outlet for removing at least one exhaust gas stream of the fuel cell, the system further comprising a first heat exchanger that receives the fuel cell waste gas stream and the combustion product gas stream.
Preferably, the system further comprises a reactor producing a hydrogen-containing gas and a pipe for supplying a hydrocarbon fuel / water mixture to a reactor producing a hydrogen-containing gas, wherein at least a portion of the hydrocarbon fuel / water mixture pipe is located within the first heat exchanger.
Preferably, the system further comprises an adsorption module using a pressure difference connected to an oxygen-containing gas source that can generate an oxygen enriched gas stream for feeding to a reactor producing a hydrogen-containing gas.
According to a seventh aspect of the present invention, there is provided an electrical current generating system comprising: at least one fuel cell having an anode outlet for removing the anode off gas and an inlet for the cathode, the fuel cell operating at a temperature of at least about 250 FROM; An adsorption module using a pressure difference that is configured to generate a gas stream enriched in oxygen; And a combustion device for producing a combustion product gas stream from the oxygen-enriched gas stream and the anode off gas; And a pipe through which the combustion device and the cathode inlet for the fuel are fluidly communicated to supply the combustion product gas stream to the cathode of the fuel cell.
According to an eighth aspect of the present invention, there is provided a method for producing at least one feed stream to at least one fuel cell operating at a temperature of at least about 250 ° C, comprising: providing at least one of a system Separating the hydrogen-containing gas or the oxygen-containing gas supply system connected to the fuel cell, the hydrogen-containing gas separation system or the oxygen-containing gas supply system including at least one device selected from a compressor or a vacuum pump, the hydrogen-containing gas separation system or system Feeding the oxygen-containing gas comprises an adsorption module using a pressure difference; Regenerating energy from at least one of the hydrogen-containing gas separation system, the oxygen-containing gas supply system, or the heat of the fuel cell; And operating the compressor or vacuum pump at least in part on the regenerated energy to provide at least one stream supplied to the fuel cell.
Preferably, the energy recovery and operation includes the introduction of at least one effluent from a fuel cell, a hydrogen-containing gas separation system, or an oxygen-containing gas supply system to at least one unit selected from a heat exchanger and a gas turbine.
Preferably, the fuel cell operates at a temperature of at least about 600 ° C.
According to a ninth aspect of the present invention, there is provided a method for producing at least one fuel stream for at least one fuel cell operating at a temperature of at least about 250 ° C, comprising: providing a first pressure difference in the first gas stream, Fuel under conditions sufficient to separate the first fuel-containing gas stream into a first fuel-enriched gas stream and a first fuel-gas-depleted gas stream; Introducing at least one of the first fuel-enriched gas stream or the first fuel-depleted gas stream to a first unit to generate a first pressure difference and introducing a first fuel-enriched gas stream to the fuel cell.
Preferably, the first pressure difference comprises adsorption using a pressure difference, wherein the first gas containing fuel stream contains a hydrogen-containing gas stream, the fuel-enriched gas stream contains a hydrogen-rich gas stream, the fuel-depleted gas stream contains a gas stream enriched in carbon dioxide and the introduction The apparatus includes introducing a gas stream enriched in carbon dioxide into a gas turbine as a working medium for performing adsorption using a pressure difference.
According to a tenth aspect of the present invention, there is provided a method for producing an oxygen-containing gas stream and a gas stream containing carbon dioxide to a cathode of a fuel cell from a molten carbonate and a hydrogen-containing gas stream to an anode of a fuel cell, comprising: separating a hydrogen-containing gas stream into a gas stream enriched in hydrogen and a stream Gas enriched with carbon dioxide, the separation occurring by adsorption using a pressure difference; Burning a mixture of a gas stream enriched in carbon dioxide and an oxygen-containing gas stream to produce a gas stream of the combustion product; Introducing a gas stream enriched in hydrogen to the anode of the fuel cell and introducing a gas stream of the combustion product into the cathode of the fuel cell.
Preferably, oxygen is enriched in the feed air stream to produce an oxygen-containing gas stream.
Preferably, the oxygen enrichment comprises introducing a feed air stream into the adsorption module using a pressure difference to produce a gas stream enriched in oxygen.
Preferably, the fuel cell separates at least one exhaust gas stream of the fuel cell, the method further comprising transferring heat from the combustion product gas stream to the fuel cell off-gas stream.
Preferably, the heated exhaust stream of the fuel cell is introduced into the gas turbine.
According to an eleventh aspect of the present invention, there is provided an electrical current generating system comprising: at least one fuel cell operating at a temperature of at least about 250 ° C .; A fuel cell heat recovery system connected to the fuel cell; At least one fuel gas supply system connected to the fuel cell, the fuel gas supply system comprising an adsorption module using a pressure difference; And a gas turbine system coupled to a fuel cell heat recovery system and a fuel gas supply system.
Preferably, the fuel cell operates at temperatures of at least about 600 ° C.
Preferably, the fuel cell heat recovery system includes a recirculation tube through which the heat recovery heat transfer medium passes for transferring heat energy from the fuel cell to the gas expansion energy for the gas turbine system.
Preferably, the heat recovery working medium has a thermal communication with the waste gas stream of the fuel cell.
Preferably, the gas turbine system comprises at least one pump or compressor connected to the adsorption module using a pressure difference and an expander connected to the pump or compressor.
Preferably, the adsorption module using the pressure difference is configured to generate a gas stream enriched in oxygen to be supplied to the fuel cell.
Preferably, the system further comprises a first pressure differential adsorption module that is configured to generate an oxygen enriched gas stream for supply to the fuel cell and a second adsorption module using a pressure difference that is configured to generate a hydrogen rich gas stream for Feed to the fuel cell.
According to a twelfth aspect of the present invention, there is provided an electrical current generating system comprising: at least one fuel cell selected from a fuel cell of molten carbonate or a solid oxide fuel cell; A fuel cell heat recovery system connected to the fuel cell; At least one fuel gas supply system connected to the fuel cell, the fuel gas supply system comprising an adsorption module using a pressure difference; And a gas turbine system coupled to a fuel cell heat recovery system and a fuel gas supply system.
According to a thirteenth aspect of the present invention, there is provided an electrical current generating system comprising: at least one fuel cell constituting at least one inlet for receiving a fuel gas stream and at least one outlet for discharging an exhaust gas stream of a fuel cell , The fuel cell being operated at a temperature of at least about 250 ° C .; At least one fuel gas supply system for supplying a flow of fuel gas to the fuel cell inlet, the fuel gas supply system comprising an adsorption module using a pressure difference; A gas turbine system connected to a fuel gas supply system; The first pipe in fluid communication with the outlet of the fuel cell to pass through it a waste gas stream of the fuel cell; A second pipe for passing through it a working heat recovery medium communicating with the turbine system; And a first heat exchanger accommodating a first portion of the first pipe and a second portion of the second pipe.
Preferably, the fuel cell operates at a temperature of at least about 600 ° C.
Preferably, the adsorption module using the pressure difference is configured to generate a gas stream enriched in oxygen to supply a fuel cell to the cathode inlet; And the gas turbine system comprises at least one pump or compressor connected to the adsorption module using a pressure difference and an expander connected to the pump or compressor, wherein the expander forms an inlet for receiving the heat recovery working fluid.
Preferably, the system generating the electric current further comprises an air source for supplying air to the adsorption module using the pressure difference and to the second pipe as a working medium for heat recovery.
Preferably, the first pipe and the second pipe are arranged side by side inside the heat exchanger, so that heat is transferred from the cathode exhaust gas in the first pipe to a heat recovery working medium in the second pipe.
Preferably, the fuel gas supply system comprises an adsorption module using a pressure difference that is configured to generate a hydrogen rich gas stream for supplying an anode of a fuel cell to an inlet; And the gas turbine system comprises at least one pump or compressor connected to the adsorption module using a pressure difference and an expander connected to a pump or compressor, wherein the expander forms an inlet for receiving the heat recovery working fluid.
Preferably, the system further comprises a hydrogen-containing gas generation system coupled to the adsorption module using a pressure difference, the hydrogen-containing gas generating system providing an outlet for supplying the hydrogen-containing gas stream to the adsorption module using the pressure difference and the hydrocarbon fuel inlet.
Preferably, the system further comprises a third pipe in fluid communication with an inlet of a hydrogen-containing gas generation system through which the hydrocarbon fuel can pass, a fourth pipe establishing a fluid communication between the output of the hydrogen-containing gas generation system and the inlet formed in the adsorption module using a pressure difference , For receiving a feed hydrogen-containing gas stream, and a second heat exchanger accommodating a portion of the third pipe and the fourth tube in which the third pipe and the fourth pipe are adjacent, so that heat is transferred from the feed hydrogen-containing gas stream in the fourth pipe to the hydrocarbon fuel in the third pipe.
Preferably, the pump is a vacuum pump for extracting an oxygen-depleted gas stream from the adsorption module using a pressure difference, and the fuel cell operates at a temperature of at least about 600 ° C.
Preferably, the fuel cell forms a first outlet for discharging the outgoing cathode gas stream and a second outlet for removing the waste anode gas stream and the cathode gas flow passes through the first pipe, the system generating the electric current further comprising a third pipe through which the outgoing Anode gas, the part of the third tube being located inside the first heat exchanger.
Preferably, the system further comprises at least one second heat exchanger accommodating a second portion of the first pipe and the second pipe, the gas turbine system including at least two turbines with an expander and a second pipe establishing a communication between the first heat exchanger, the second Heat exchanger and two turbines with expanders.
Preferably, the fuel cell comprises a solid oxide fuel cell or a fuel cell made of molten carbonate; The fuel gas supply system comprises a first rotary adsorption module using a pressure difference to supply an oxygen enriched gas stream to an inlet of the fuel cell cathode and a second rotating adsorption module using a pressure difference to supply a hydrogen rich gas stream to the fuel cell anode inlet ; And the gas turbine system is connected to the first rotary adsorption module using the pressure difference and the second rotating adsorption module using the pressure difference.
Preferably, the fuel gas supply system comprises a gas separation module that is configured to generate a fuel-enriched gas stream for feeding to the fuel cell inlet.
According to a fourteenth aspect of the present invention, there is provided a method for producing at least one fuel-enriched gas stream for at least one fuel cell operating at a temperature of at least about 250 ° C, comprising: generating a pressure difference in the gas stream, Containing fuel in conditions sufficient to separate the flow of fuel-enriched gas from the gas stream containing the fuel, the creation of the pressure difference including adsorption using a pressure difference; Introducing a stream of fuel-enriched gas into the fuel cell; Transferring heat from the fuel cell to the working medium of heat recovery and introducing a heat recovery working medium into at least one unit to generate the pressure difference.
Preferably, the gas stream containing the fuel contains air, the fuel-enriched gas stream contains a gas stream enriched in oxygen and the unit comprises a gas turbine.
Preferably, the heat transfer includes transferring heat from the exhaust gas stream of the at least one fuel cell to the heat recovery working medium.
Preferably, the heat recovery working medium is expanded upon introduction into the gas turbine to drive the compressor or the pump generating the pressure difference.
According to a fifteenth aspect of the present invention, there is provided a method for producing at least one stream of fuel-enriched gas to at least one of the fuel cells, a molten carbonate fuel cell or a solid oxide fuel cell, comprising: generating a pressure difference in the gas stream, Containing fuel under conditions sufficient to separate the flow of fuel-enriched gas from the gas stream containing the fuel; Introducing a stream of fuel-enriched gas into the fuel cell; Transferring heat from the fuel cell to the working medium of heat recovery and introducing a heat recovery working medium into at least one unit to generate the pressure difference.
According to a sixteenth aspect of the present invention, there is provided a method for producing a gas stream enriched in oxygen on at least one of the fuel cells to a fuel cell of molten carbonate or a fuel cell from a solid oxide comprising: providing a first adsorption module using a pressure difference that is made With the possibility of generating a gas stream enriched in oxygen to be supplied to a fuel cell; Providing a gas turbine system connected to a first adsorption module using a pressure difference; And circulating the heat recovery fluid flow through the gas turbine system in which a portion of the heat recovery heat medium flow is located adjacent to the exhaust gas stream of the at least one fuel cell.
Preferably, the gas turbine system comprises at least one expander connected to the compressor or pump, and the heat recovery working medium is introduced into the expander.
Preferably, the oxygen-enriched gas stream is further heated before being supplied to the fuel cell by positioning a portion of the oxygen-enriched gas stream adjacent to at least one of the heat recovery working fluid stream or the fuel gas off-gas stream.
Preferably, a second pressure-adsorption module is provided that is adapted to generate a hydrogen-enriched gas stream to be supplied to the fuel cell, the gas turbine system being further coupled to the second adsorption module using a pressure difference.
According to a seventeenth aspect of the present invention, there is provided an electrical current generating system comprising: at least one fuel cell, a molten carbonate fuel cell or a solid oxide fuel cell and a pressure differential adsorption module connected to a fuel cell that can produce a hydrogen-containing Gas for supply to the fuel cell, the pressure-difference adsorption module comprising a first adsorbent and at least one second material selected from a second adsorbent and a steam reforming catalyst or a water gas shift reaction catalyst.
Preferably, the first adsorbent advantageously adsorbs carbon dioxide as compared to water vapor.
Preferably, the pressure difference adsorption module includes at least one first zone and at least one second zone, the first zone including a first adsorbent.
Preferably, the first adsorbent comprises an alkali activated material and the catalyst comprises a Cu-ZnO, a transition metal carbonyl complex or a catalyst comprising a metal from a group of transition metals introduced into the zeolite cell.
Preferably, the system further comprises a third zone, which includes at least one desiccant.
Preferably, the catalyst is included in at least one of the first zone or the second zone.
Preferably, the alkali-activated material is selected from alumina impregnated with potassium carbonate, hydrotalcite activated with potassium carbonate, and mixtures thereof.
A gas turbine system associated with adsorption using a pressure difference can drive all compressors and vacuum pumps to adsorb O 2 using a pressure difference, together with a vacuum pump and / or a heavy reflux condenser for H 2 adsorption using a pressure difference. This additional cycle of the gas turbine allows the vacuum pump for heavy reflux and the compressor to be driven from an expander that expands the combustion products of the residual hydrogen-containing adsorption gas using a pressure difference. A distinctive feature of certain described embodiments is the combination of a vacuum pump (s) and / or compressors with a gas turbine directly or indirectly actuated, by burning residual gas or, indirectly, by heat exchange directed to the waste heat of the fuel cell stack. Thus, neither an electric generator connected to a cycle of additional power generation with the use of waste heat nor an auxiliary power source for driving all compressors and vacuum pumps for gas separation systems is required. The gas turbine system can and can be connected to an auxiliary device, for example an electric current generator, which can provide power for the vehicle air-conditioning system. The designs of single-chamber or multi-chamber gas turbines can be taken into account. Centrifugal or axial devices can be used as compressors and pumps. Principles based on the integration of gas turbines and fuel cells are particularly preferred for increased energy levels. In some economically preferred embodiments, autonomous gas generators (turbo charging units) are used.
Thus, more advanced systems of fuel and energy complex and TETO have been created, including adsorption using a pressure difference and an integrated gas turbine system for enriching hydrogen through the anode, with rapid separation of carbon dioxide (to the cathode for TEC systems). In some systems, a hydrogen adsorption system using a pressure difference will operate at high temperatures, even approaching the temperatures of the TEC system.
In one embodiment of the first and second embodiments described above, the system producing the electric current comprises a fuel cell TERC or TETO, an oxygen-containing gas supply system, and / or a hydrogen-containing gas supply system. Топливный элемент может включать анодный канал, имеющий входное отверстие для анодного газа, для приема подаваемого водородосодержащего газа (или топливного газа, который вступает в реакцию, образуя водород в анодном канале), катодный канал, имеющий входное отверстие для катодного газа и выходное отверстие для катодного газа, и электролит, сообщающийся с анодным и катодным каналом, чтобы способствовать переносу ионов между анодным и катодным каналом. Система подачи водородосодержащего газа может включать систему адсорбции с использованием разности давлений, включающую вращающийся модуль, имеющий статор и ротор, вращающийся относительно статора, для обогащения водорода в анодном канале и извлечения из него углекислого газа. В некоторых примерах реализации изобретения система, вырабатывающая электрический ток, включает систему адсорбции с использованием разности давлений (АРД) или вакуумную систему адсорбции с использованием разности давлений (ВАРД) для обогащения кислорода из воздуха, подаваемого в катодный канал и/или в систему обработки топлива. Установка АРД для обогащения водорода и отделения углекислого газа будет называться первой установкой АРД, а вторая установка АРД или ВАРД может быть обеспечена для обогащения кислорода.
Ротор установки АРД, используемый в описываемых системах и процессах, включает несколько путей прохождения принимаемого материала адсорбента для избирательного адсорбирования первого газового компонента после увеличения давления в путях его прохождения относительно второго газового компонента. Система адсорбции с использованием разности давлений может и включать компрессионное оборудование, связанное с вращающимся модулем, чтобы способствовать проходу газа через пути его прохождения для отделения первого газового компонента от второго газового компонента. Статор включает первую контактную поверхность клапана статора, вторую контактную поверхность клапана статора и несколько рабочих камер, выходящих на контактные поверхности клапана статора. Рабочие камеры включают камеру для подаваемого газа, камеру для выхода легкой флегмы и камеру для возврата легкой флегмы.
Система адсорбции водорода с использованием разности давлений может действовать при высокой рабочей температуре. Например, рабочая температура адсорберов в первой установке адсорбции водорода (АРД) может находиться в пределах приблизительно от температуры окружающего воздуха до повышенной температуры, приблизительно до 450°С, поскольку этому может способствовать рекуперативный или регенеративный теплообмен между первой установкой АРД и анодным каналом топливного элемента. Согласно другому варианту, рабочая температура адсорберов может находиться в пределах приблизительно от рабочей температуры батареи ТЭРК (т.е. приблизительно от 600 до 650°С) или батареи ТЭТО (т.е. приблизительно от 500 до 1000°С), спускаясь до приблизительно 450°С, чему может способствовать рекуперативный или регенеративный теплообмен. В конкретных примерах реализации рабочая температура адсорберов АРД водорода может находиться в пределах от температуры окружающего воздуха приблизительно до 800°С, в частности приблизительно от 150°С до 800°С для установок АРД, которые содержат катализаторы, и от температуры окружающего воздуха до 200°С для установок АРД, не содержащих катализаторов. Эта установка АРД может быть сконструирована таким образом, чтобы поддерживать градиент температуры по длине каналов, по которым проходит поток, так что температура на втором конце адсорберов превышает температуру на первом конце адсорберов. Используемое здесь выражение "рабочая температура адсорберов" означает температуру газа, протекающего через адсорберы, и/или температуру слоев адсорбера.
According to a third embodiment of the invention, there is described an electrical current generating system that includes a TEK or TETO and an APD (pressure differential adsorption) unit for H 2 connected to a TERC or TETO, where the HA for H 2 comprises a first adsorbent and, at least At least one second material selected from a second adsorbent and a steam reforming catalyst and a water gas shift catalyst. The first adsorbent has a chemical difference from the second adsorbent. For example, the adsorbent in the adsorbers of the first APD unit (for hydrogen) may comprise a first adsorbent zone that is selective at an elevated operating temperature (i.e., approximately 250 ° C. to 800 ° C.) for carbon dioxide preferred relative to water vapor. Such suitable adsorbents of the prior art include alkali activated materials. Examples of alkali activated materials include materials containing alkali metal cations such as Li, Na, K, Cs, Rb, and / or alkaline earth metals, for example Ca, Sr and Ba. The materials can generally be in the form of a hydroxide, carbonate, bicarbonate, acetate, phosphate, nitrate or a compound of an organic acid, alkali or alkaline earth metal salt. Such compounds can be deposited on any suitable substrate, for example alumina. Examples of specific materials include alumina impregnated with potassium carbonate and hydrotalcite activated with potassium carbonate. For exemplary embodiments of a first APD unit operating at temperatures close to ambient temperature, suitable adsorbents include alumina gel, activated carbons, hydrophilic zeolites (eg, zeolite type 13X and many other known zeolites) and hydrophobic zeolites (eg, type Y zeolite or silicate).
In high temperature embodiments of the first APD unit (for hydrogen), the adsorbent in the same or in another zone of the adsorbers may comprise a component catalytically active at the operating temperature of this zone for a steam reforming reaction (eg, methane fuel or methanol fuel) and / The reaction of the conversion of water gas (steam). The catalytically active component can be a metal from the group of reduced transition metals or a mixture of metals or a metal from a group of transition metals dispersed in zeolite cells and reversibly forming a carbonyl complex of the metal at the operating temperature of the second zone. Since the carbon dioxide is selectively adsorbed relative to the water vapor when the enriched hydrogen is continuously removed to the anode channel, the concentrations of carbon dioxide and hydrogen over the catalytically active component are maintained at a reduced level by the ARD process in order to achieve the equilibrium effect of the reaction beneficially affecting the course of the steam reforming reactions And / or water gas (vapor) in the adsorbers of the first APD unit. The conversion of carbon monoxide and fuel components is completed by the formation of carbon dioxide and additional hydrogen. This is an example of an ARD reactor, or an "enhanced sorption reactor", which accelerates the effect of a simple gas separation, resulting in the production of enriched hydrogen, together with the removal of carbon dioxide and the approach of the water gas (steam) conversion reaction, Qualitative purification of hydrogen.
Industrial adsorption of H 2 using a pressure difference is usually carried out at significantly elevated pressures (> 10 bar) to achieve both high purification and high recovery (~80% -85%). Fuel cell systems that work with reformers using methanol under pressure, or in conjunction with gas turbine cycles, operate at relatively high pressures. Fuel cells from molten carbonate operate at pressures from atmospheric to about 10 bar of ultimate pressure, with the currently preferred lower pressures that are needed to extend the life of the fuel cell stack. Solid oxide fuel cells can be designed to operate at any pressure, and in the present invention, operating pressures of about 5 to 20 bar are preferred.
The pressure of the light gas obtained from the ARA units for hydrogen and oxygen can be very different in the described systems and processes. To further increase the pressure of the resulting light gas, if necessary, compressors and other pressure increase mechanisms are used, prior to introduction into the fuel cell. At very low feed pressures (2 to 3 bar), the first APD plant can use additional compression to increase hydrogen recovery and simultaneously increase the concentration of carbon dioxide. Alternative principles include vacuum pumps to increase the working pressure ratio, or alternatively, the "reflux condensate" (intermediate product) of recompression and recirculation supplied to the AED as a fraction of the effluent at full pressure. Vacuum and heavy reflux can be used in combination with a vacuum pump exceeding standard sizes.
The described systems and processes can improve the overall efficiency of fuel cell systems, while reducing the proportional amount of carbon dioxide produced and at the same time ensuring its delivery to the proper place and time in a highly concentrated form for the most convenient removal from the atmosphere, for example, underground in depleted natural seams Gas, or for use in the recovery of oil from oil tanks. In addition, the exported energy can only be supplied from the fuel cell stack, so it is not possible to export energy from the cycle of additional power generation using waste heat or from turbine generators operating on the generation of electricity with the use of waste heat, which in this way become simple turbo charging units. In contrast, according to certain embodiments, the system uses high temperature waste heat from the fuel cell stack to drive the autonomous rotary turbo charging units needed for air compressors, vacuum evacuation of exhaust air with a high nitrogen content, and compress the heavy reflux of the carbon dioxide-rich residual anode Gas, while the heat coming from the fuel cell stack corresponds to these additional loads, contributing to the work with a high current density.
The fuel cell stack can operate at a relatively high current density (e.g., about 200 to 400 mA / cm 2 ) to generate the required amount of waste heat used for the compression auxiliary loads, since the described ARD systems have dramatically increased idling voltage (i.e. Approximately 0.75 to 0.95 volts). The required fuel cell size per kV can be significantly reduced at high current density. Similarly, a battery of fuel cells of the same size can reach the total energy output that was previously achieved by the battery plus the generator of additional power generation using the waste heat, which in some embodiments is completely eliminated.
The following features and advantages of the invention will become apparent from the following detailed description of several exemplary embodiments of the invention, with reference to the accompanying drawings.
Some embodiments of the invention will now be described with reference to the accompanying drawings in which:
![]() |
![]() |
![]() | |
![]() |
![]() |
![]() |
![]() |
FIG. 1 shows an axial section of the rotating ARD module. FIG.
FIGS. 2 to 5B are cross-sections of the module of FIG.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
FIGS. 6 to 9 are simplified schematic representations of alternative embodiments of FERC installations and 10-14 are simplified schematic representations of alternative TETO settings. The rotary APD module for oxygen enrichment is described below with reference to FIGS. 1 to 5B, but the same or similar configuration of the rotating ARD module can be used to enrich hydrogen (i.e., separation) in the described systems producing electric current. As used herein, the term "rotary APA" includes, but is not limited to, ADA, where a group of adsorbers rotate relative to a fixed contact surface of a valve or stator, or ARD, where the contact surface of the valve or stator rotates relative to the group of adsorbers. |
FIG. 1 shows a rotating APA module 1 that includes the number of "N" adsorbers 3 in the shell housing 4 for the adsorbers. Each adsorber has a first end 5 and a second end 6 with a path for flowing between them, in contact with a nitrogen-selective adsorbent (for oxygen enrichment). Adsorbers are deployed in the form of an axially symmetrical group around the axis 7 of the shell shell for adsorbers. The housing of the shell 4 rotates about the axis 7 relative to the first and second working bodies 8 and 9, coming into contact through the first valve contact surface 10 with the first working body 8 to which the gas mixture is supplied and from which the heavy product is removed and through a second contact A valve surface 11 with a second working body 9 from which a light product is removed.
In the exemplary embodiments, particularly those shown in FIGS. 1-5, the shell of the adsorber cover 4 rotates and will henceforth be referred to as the adsorber rotor 4, while the first and second working bodies are stationary and together form the module stator unit 12. [ The first working body will hereinafter be referred to as the first valve stator 8, and the second working body will be referred to hereinafter as the second valve stator 9. In other embodiments, the adsorber shell 4 may be stationary, and the first and second working bodies are rotors of the rotary valve of the distributor.
In the exemplary embodiment shown in FIGS. 1 to 5, the flow paths through the adsorbers are parallel to the axis 7, so that the flow has an axial direction and the first and second valve contact surfaces are shown as flat annular disks perpendicular to the axis 7. However, in more In a broad sense, the flow direction in the adsorbers can be axial or radial, and the first and second contact surfaces of the valve can be any rotation bodies centered on the axis 7. The process steps and the resulting working chambers will be at the same angles, regardless of the radial or axial Flow direction in the adsorbers.
Figures 2-5 show cross sections of module 1 in planes indicated by arrows 12'-13 ', 14'-15' and 16'-17 '. The arrow 20 in each section shows the direction of rotation of the rotor 4.
FIG. 2 shows a section 12'-13 'of FIG. 1 that intersects the rotor of the adsorber. Here, the number "N" is 72. The adsorbers 3 are installed between the outer wall 21 and the inner wall 22 of the adsorber wheel (disk) 208. Each adsorber comprises a rectangular flat pack 3 of adsorbent sheets 23 with spacers 24 between the sheets to create flow paths in the axial direction. Gaskets 25 are provided between the adsorbers to fill the empty space and prevent leakage between the adsorbers.
As shown in FIG. 1, the adsorbers 3 may include several distinct zones between the first end 5 and the second end 6 of the flow channels, which are shown here as three zones, respectively, a first zone 26 near the first end 5, a second zone 27 in the middle of the adsorbers and a third Zone 28 near the second end 6. Alternatively to the adsorbent zones, various adsorbents can be provided in layers or mixtures including different gradients of adsorbent concentrations along the path of the gas flow. The transition from one adsorbent to another and can be a dilute mixture of two adsorbents, rather than a clear transition. Another possible option is to provide a mixture of different adsorbents, which may or may not be uniform.
When H 2 is adsorbed using a pressure difference at a temperature of up to 250 ° C., the first zone may contain an adsorbent or desiccant selected to remove highly intensely adsorbed components of the feed gas mixture, for example water or methanol vapor, and some carbon dioxide. The second zone may comprise an adsorbent generally selected for volumetric separation of impurities of a relatively high concentration, and the third zone may contain an adsorbent, usually selected to cleanly remove impurities of a relatively low concentration.
When H 2 is adsorbed using a pressure difference between approximately 250 ° C. and 800 ° C., the first zone may contain an adsorbent that selectively absorbs CO 2 with respect to the steam as described above. The second zone may contain an adsorbent (for example, a zeolite, a Cu (I) -containing material or an Ag (I) -containing material) that selectively absorbs CO relative to the water vapor. The third zone may contain a desiccant to remove water vapor, for example an alumina gel. In one embodiment, the adsorbent of selective CO 2 uptake and the adsorbent of selective CO absorption can be switched on or mixed with another in one zone rather than in two different zones.
The steam reforming catalyst (s) and / or water gas shifts described above can be included in any part of the adsorber layer, but are usually included in the reaction before the removal of steam, since the water vapor is a reactant of the steam reforming reactions and the conversion of the water vapor Gas. At temperatures of about 600 ° C to 1000 ° C, an effective catalyst for the conversion of methane with steam and water gas conversion is nickel with aluminum oxide as the carrier. Iron / chromium are effective catalysts for the reaction of the water gas conversion at a temperature of about 350 ° C to 600 ° C. At temperatures of about 200 to 300 ° C, copper / zinc oxides are effective for the water gas shift reaction.
In embodiments where the adsorption of H 2 using a pressure difference performs an exothermic water gas shift reaction, any excess heat can be removed from the reaction of the ARD by providing, for example, heat exchange means in the wall of the APD unit or in the adsorber beds. In those embodiments in which H 2 adsorption employs a differential pressure to perform an endothermic steam reforming reaction, any additional necessary heat can be provided to the ATS by providing heat exchange means in the wall of the APD unit or in the adsorber beds or by combining the burner with the ARD.
The adsorbent sheets contain a reinforcing material (for example, glass fibers, metal foil or wire mesh) to which an adsorbent material is attached to a suitable binder. To separate the air in order to obtain enriched oxygen in the first zone, an alumina gel can be used to remove water vapor, and typical nitrogen-effective adsorbents in the second and third zones are zeolites of the X, A or chabazite type with the usual cation exchange with lithium, calcium, Strontium, magnesium and / or other cations and with optimized silicon / aluminum ratios, as is well known to those skilled in the art. The crystals of the zeolite are glued together by silica, clay, or other binders, or themselves among themselves in the matrix of the adsorbent sheet. Zeolite adsorbents of selective nitrogen adsorption are effective in the range from ambient temperature to 100 ° C.
Satisfactory adsorbent sheets were obtained by coating a slurry of zeolite crystals with binder components onto a reinforcing material, and successful examples included non-woven glass fiber nets, woven metal materials and bulk aluminum foil. Spacers are provided by extruding or stamping the relief with lifting, or placing the struts produced in the production between adjacent pairs of sheets of the adsorbent. Alternative satisfactory spacers are provided in the form of woven metal nets, glass fiber nonwoven nets and metal foils with flow channels obtained by etching through a photolithographic template. Adsorbers from the layered sheet material can be formed by stacking flat or curved sheets or forming a spiral roll with flow channels from the first end of the adsorber to its second end to flow channels to fill the volume of the adsorber housing of the desired shape. Examples of methods and structures with filled, spiral adsorbers are described in co-pending US provisional application No. 60/285527, filed April 20, 2001, and incorporated herein by reference.
The typical experimental thickness of the sheet was 150 microns with a height of the spacers from 100 to 150 microns, and the length of the adsorber channel for flowing was 20 cm. Using zeolites of type X, they achieved excellent effects in separating oxygen from air in the ARD process at a cycle frequency of 1 to less At least 150 cycles per minute, in particular at least 25 cycles per minute.
3 shows the arrangement of the channels of the rotor 4 in the first and second contact surfaces of the valve (distributor), respectively, in the planes formed by the arrows 14'-15 'and 16'-17'. The adsorption passageway 30 provides fluid communication directly from the first or second end of each adsorber to the first or second contact surface of the valve, respectively.
4 shows the first valve contact surface 100 of the first stator 8 in the first valve contact surface 10 in the plane indicated by the arrows 14'-15 '. The connections for the fluid medium leading to the supply compressor 101 sucking the supply air from the inlet filter 102 to the exhaust fan 103 supplying the nitrogen-enriched second product to the supply pipe 104 of the second product are shown. Compressor 101 and exhaust fan 103 are shown connected to a drive motor 105.
Arrow 20 indicates the direction of rotation of the adsorber rotor. In the annular contact surface of the valve between the circumferential seals 106 and 107, the open space of the first stator valve contact surface 100 communicating with the delivery and discharge chambers is indicated by distinct angular segments 111-116 corresponding to the first working ports communicating directly with the working chambers indicated by those Same digital positions 111-116. The substantially closed space of the valve contact surface 100 between the working chambers is indicated by the shaded sectors 118 and 119 that slide with a zero gap or preferably a narrow gap to reduce friction and wear and without unnecessary leakage. A typical closed sector 118 provides a passage for the adsorber between a position open to chamber 114 and open to chamber 115. A gradual opening is provided that is provided by a tapered passageway between the sliding sector and the sealing surface to achieve a gentle pressure equalization when the adsorber opens into a new chamber. Essentially, in order to close the flow passing at one end or from one end of the adsorbers, when a pressure increase or discharge from the other end is performed, much wider closed sectors (i.e. 119) are provided.
The feed compressor supplies gas to the overpressure cells 111 and 112 and to the feed gas generation working chamber 113. Chambers 111 and 112 have successively increasing working pressures, and the working chamber 113 is under high operating pressure of the ARD cycle. Thus, the compressor can have a multi-stage or split flow system supplying a proper volume of feed stream to each chamber to generate excess pressure in the adsorbers using intermediate pressure levels of the chambers 111 and 112 and then finally raising the pressure to operate in the chamber 113. The split Flow in the compressor can be provided in rows, such as a multi-stage compressor with passages for supplying between the stages or in the form of several parallel-arranged compressors supplying gas to the working pressure of the chambers 111-113. Alternatively, compressor 101 can supply all of the feed gas to a higher pressure by throttling some of this gas to be supplied to chambers 111 and 112 with their respective intermediate elevated pressures.
Similarly, the exhaust fan 103 removes the heavy gas produced from the countercurrent discharge chambers 114 and 115 with the gradually decreasing pressures of these chambers and finally from the outlet chamber 116 where the pressure is the lowest in the cycle. As with the compressor 101, the exhaust fan 103 can be provided as a multi-stage or split flow system, the stages can be arranged in rows or in parallel to receive each flow at suitable intermediate pressures that are reduced to a lower pressure.
In the embodiment of FIG. 4A, the lower pressure is the ambient pressure such that the outgoing gases from the chamber 116 are directed directly to the heavy product feed pipe 104. The exhaust fan 103 thus provides a pressure reduction with energy recovery to assist the engine 105 from the counterflow vent (s) 114 and 115. For the sake of simplicity, the exhaust fan 103 can be replaced by throttling openings as means for reducing the countercurrent release pressure from the chambers 114 and 115.
In some embodiments, the lower pressure of the ARD cycle is below atmospheric pressure. The exhaust fan is then provided with a vacuum pump, as shown in FIG. 4B. Again, the vacuum pump may be a multi-stage or split flow system, wherein the individual stages may be arranged in rows or in parallel to receive countercurrent discharge flows exiting their chambers at operating pressures greater than the lower pressure, which is the lowest vacuum pressure. 4B, a fresh counterflow flow from the chamber 114 is discharged at the ambient air pressure directly into the heavy product feed pipe 104. If a single-stage vacuum pump is used to simplify the process, the countercurrent discharge flow from the chamber 115 will be throttled with a pressure drop through the opening to connect to the flow from the chamber 116 at the inlet of the vacuum pump. The vacuum pump makes it possible to install the ARD at lower pressures, which may be useful when the APD is connected to a fuel cell operating at lower pressures, such as a fuel cell operating at ambient pressure. The effect of vacuum on the ARD promotes high oxygen yield, or fractional reduction, and therefore high energy efficiency when air is separated.
5A and 5B show the contact surface of the second stator valve in section 16'-17 'of FIG. 1. FIG. Open contact surface passes are second valve access passages communicating directly with the light product feed chamber 121, several light reflux exit chambers 122, 123, 124 and 125 and the same number of chambers 126, 127, 128 and 129 inside the second stator to return light Phlegm. The working passages of the second valve are located in the ring formed by the circumferential seals 131 and 132. Each pair of chambers for the exit and return of the light reflux provides a stage for reducing the pressure of the light reflux, respectively, for the functions of the ARD process, such as forcing, Partial pressure and purging for cleaning.
To illustrate the possible reduction in light reflux pressure with energy regeneration, expander (expander) 140 of the discontinuous light reflux stream in FIGS. 1 and 5A is shown to provide a reduction in the pressure of the four reflux stages with energy recovery. The light reflux diluent provides a pressure reduction for each of the four reflux stages, between chambers 122 and 129, 123 and 128, 124 and 127 and 125 and 126, respectively, to exit and return the light reflux, as shown. The reflux diluent 140 can drive the additive compressor 145 for the light product by the drive shaft 146 which supplies the oxygen-enriched light product to the oxygen supply tube 147 compressed to a pressure higher than the high pressure of the APD cycle. To illustrate the possible reduction in light reflux pressure with energy regeneration, the expander 140 for a discontinuous light reflux stream is provided to reduce the pressure of the four reflux stages with energy recovery. The light reflux diluent serves as a means for reducing the pressure for each of the four reflux stages, between the chambers 122 and 129, 123 and 128, 124 and 127 and 125 and 126, respectively, to exit and return the light reflux, as shown.
Since the light reflux and the light product have approximately equal purity, the expander 140 and the light product auxiliary compressor 145 can be sealed in one housing that can be combined with the second stator as shown in FIG. 1. This "turbocharger" Of a separate drive motor is advisable since it is possible to achieve a useful pressure rise without the use of an external motor and corresponding shaft seals, and in addition, this design can be very compact when operating at high shaft speeds.
5B shows a simpler alternative use of the throttle opening 150 as a means of reducing pressure for each of the light reflux steps.
Referring to FIG. 1, the supplied pressurized gas enters chamber 113 as indicated by arrow 125, while the heavy product exits chamber 117 as indicated by arrow 126. The rotor rests on bearing 160 with shaft seal 161 on drive shaft 162 of the rotor The first stator 8, which in the assembly is integrated with the first and second valve stators. The rotor of the adsorber is driven by the engine 163 as a driving means of the rotor.
Buffer seal 170 is installed to provide a more compulsory seal of buffer chamber 171 between seals 131 and 171. To further reduce leakage and torque friction, buffer seal 171 seals on seal surface 172 of a much smaller diameter than the diameter of circumferential seal 131. Buffer seal 170 Performs sealing between the elongation 175 of the adsorber rotor 4 and the sealing surface 172 on the second valve stator 9, wherein the rotor extension 175 covers the rear of the second valve stator 9 to form a buffer chamber 171. The stator housing member 180 is provided as a structural connection between the first The valve stator 8 and the second valve stator 9. The provision of direct passages of adsorbers to the stator surface is an alternative to providing such seals and is described in copending US Provisional Application No. 60/301723 filed on June 28, 2001, which is incorporated herein by reference.
In the following drawings of this description, simplified diagrams represent a device or ARD module. In these highly simplified schemes, only one tube 181 leading to the first valve contact surface 10 will be shown; And one heavy product pipe 182 extending from the valve contact surface 10; And a light product feed pipe 147 and one light reflux stage 184 with a pressure reduction means communicating with the second valve contact surface 11.
FIGS. 6-14 show various energy recovery systems using various operating fluidized media for energy regeneration. In one embodiment, the oxygen compressor APD is combined with a gas turbine cycle of indirect heating of the additional power generation using waste heat, where air is used as the working medium. At least a portion of the air is provided for oxygen enrichment of the ARD at suitable pressures; The rest of the air is compressed to a higher pressure as the working medium of the gas turbine cycle subjected to indirect heating of the fuel cell stacks through heat exchangers connected to the cathode and / or anode flow circuits.
In other examples of the working medium's implementation of an additional power generation cycle using waste heat, the gas of the anode loop in the gas turbine cycle is. If the hydrogen enrichment of the ARD is conducted close to the ambient temperature, a recuperative heat exchanger is used to achieve a high thermodynamic efficiency. Alternatively, if the hydrogen enrichment of the APA is carried out so that the second end of the plant has an elevated temperature approaching the temperature of the fuel cell stack and its first end is kept at a temperature close to the ambient temperature, it can be used as a thermal rotary gas turbine cycle regenerator , Using anode gas as a working medium.
Hydrogen can be used as fuel for power plants operating at TETO. When the anode gas is used as a working medium for additional power generation using heat, hydrogen containing a significant fraction of water vapor (for example, from about 25% to 50%) can serve as a working medium for expansion, while the working medium for compression is hydrogen , From which the water obtained from the fuel cell has been largely removed by condensation. The radial flow expander may be used in a hydrogen / steam mixture exiting the anode of the fuel cell. Due to the fact that relatively dry hydrogen, subject to compression after condensation, has a low molecular weight, alternative suitable compressors include high-speed centrifugal, multi-stage centrifugal and volumetric compressors.
For small power plants, a cycle of additional generation of electricity using waste heat can use a separate working medium from anode and cathode gases, such as water vapor (Rankine cycle) and hydrogen (Stirling cycle). For small fuel cells TETO, working on hydrogen, the use of the Stirling engine for additional power generation with the use of waste heat is particularly advisable, since the working environment of the engine can be replenished from the stock of hydrogen fuel. The need for full sealing of the seals of the operating environment of the Stirling engine is thus reduced in the present invention.
Since the systems and methods described herein utilize oxygen enrichment and hydrogen enrichment in the ARD process to increase the voltage and / or current density obtained from the fuel cell stack, the fractional amount of the calorific value of the fuel produced as high-temperature waste heat to a cycle of additional power generation with The use of waste heat is significantly reduced compared to the prior art. Accordingly, the flow rate of the working fluid and the heat transfer load are reduced. The rated power of the cycle is reduced in proportion to the increase in electricity directly produced by the fuel cell battery. The useful mechanical energy obtained by the cycle of additional generation of electricity with the use of waste heat is used mainly or exclusively for compression loads associated with the auxiliary equipment of the ARD process.
6-9 is a simplified schematic view of an example of a power plant 200 operating on a heat element from a molten carbonate comprising a heat element 202, a pressure differential pressure (APD) 204 device interacting with a combustion chamber 206 for transferring carbon dioxide with Anode side to the cathode side of the fuel cell, and a gas turbine 208 for gas compression and expansion combined with them. The APA unit 204 increases the concentration of hydrogen and reduces the concentration of carbon dioxide above the cathode, thereby increasing the cell voltage. This directly increases the efficiency of the fuel cell stack and the power output while reducing the heat generated by the fuel cell such that the fraction of the power output of the plant regenerated less efficiently by the additional power generation cycle using the waste heat is reduced. The systems shown in FIGS. 6 to 9 are only examples, and other systems with a different arrangement of devices and pipes, or with additional devices and pipes, or with fewer of them, can be used.
The molten carbonate fuel cell stack 202 includes a molten carbonate electrolyte 210 disposed on a porous ceramic matrix located between the anode channel 212 and the cathode channel 214. The anode channel has an inlet 216 and an outlet 218, and the cathode channel 214 has an inlet 220 and an outlet 222.
The embodiment of FIG. 6 shows two alternative principles for supplying a gas combination. More specifically, any of these feed gases can be used separately in any TERC plant. These alternatives depend on whether the feed gas is suitable for direct access to the anode or for access only after processing in the first APD unit. If the fuel is natural gas, these alternatives depend on the fuel treatment or on the combinations (1) the "internal conversion" within the fuel cell stack, (2) the "increased sorption conversion" within the first APA plant, or (3) the "outward conversion" In the immediate vicinity of the FERC system, as described herein.
Endothermic conversion reactions are
CH 4 + H 2 O CO + 3H 2 and
CH 4 + 2H 2 O CO 2 + 4H 2
With exothermic conversion of water vapor
CO + H 2 O CO 2 + H 2
Supplemented by partial combustion in the case of autothermal conversion of CH 4 + 1/2 O 2 CO + 2H 2 .
The inlet port 230 for the first feed gas communicates with the input of the anode 214, introducing the first feed gas, already compressed and heated, into the operating conditions of the fuel and energy complex. The first feed gas can be hydrogen, industrial gas produced by an external fuel processing means (for example, a coal gasifier or reformer for the conversion of methane with steam), or natural gas for internal conversion within the anode conduit 212, which is then modified, as is known in the art In the art to contain suitable steam reforming catalysts, such as, for example, nickel with alumina as a carrier.
The inlet 240 for the second feed gas communicates with the feed gas generation chamber in the first contact surface of the rotary valve of the first APA device 204, again introducing already compressed and preheated gas to the first higher pressure and operating temperature APA unit. The heavy product stream enriched with carbon dioxide and water vapor is discharged from the discharge and exit chamber in the first contact surface 10 of the rotary valve into the lower pressure pipe 242 of the first APD plant. The high pressure of the first APD unit is slightly higher than the working pressure of the TEC, and the lower pressure may be atmospheric or lower than atmospheric pressure. If the working pressure of the TERC is selected within the atmospheric range, the first APD installation will be vacuum, with the lower cycle pressure being in the range of about 0.1 to 0.5 bar absolute pressure.
The heavy product stream from the pipe 242 is compressed again to a higher pressure of the first APD plant by the carbon dioxide compressor 244 which supplies a compressed heavy product stream to the pipe 246 that has a tap into the heavy reflux tube 247 in communication with the feed gas generation chamber in the first The contact surface 10 of the rotating valve of the first APA apparatus 204, and the withdrawal into the combustion chamber 206 of the gas turbine. Alternatively, if the heavy product stream in conduit 242 is below atmospheric pressure, then device 244 may be a vacuum pump to extract a heavy product stream.
The light gas of enriched hydrogen from the first APA plant 204 is supplied by a pipe 250 from the second contact surface 11 of the first valve setting valve ARD to the anode inlet 216. Light reflux steps are shown where separate light gas streams with gradually decreasing pressures are removed from the second contact surface of the rotary valve to reduce pressure in the respective stages of the light reflux expander 140 and then returned to the second contact surface of the valve to clean and restore the pressure of the adsorbers. After passing through the anode channel 212, the anode gas depleted in hydrogen and enriched in carbon dioxide is removed from the anode outlet 218 through the treatment tube 255 in the first APA unit 204 to recover hydrogen, carbon dioxide and methane fuel components, while removing carbon dioxide and at least Least part of the water vapor.
The anode conduit 212, conduit 255, APD unit 204, and conduit 250 form a closed anode loop where hydrogen is recycled and replenished substantially for the complete utilization of hydrogen and other fuel components, while carbon dioxide is continuously removed by the APA unit 204. The auxiliary pressure boosting means may be useful for overcoming the pressure drop across the anode contour. In FIG. 6, the pressure boosting means is an APA unit 204, without requiring any mechanical means to increase the pressure. The gas exiting the anode in the pipe 255 is at a moderately lower pressure than the feed gas in the supply pipe 240 and the gas of the heavy reflux product in the pipe 247. Thus, the anode off gas enters the gas pressure reduction chamber in the first contact surface 10 of the rotating Valve. After the gas leaving the anode enters the adsorbers 3, it there is compressed back to higher pressure by the feed gas and heavy reflux gas entering the adsorber from the tubes 240 and 247.
Optionally, the heavy reflux stage and the tube 247 can be eliminated, which will increase the fraction of the fuel gas components (hydrogen, carbon monoxide and methane) supplied to the combustion chamber 206. At a relatively high pressure ratio between the high and low pressures, Relatively high recovery of fuel gas components in the gas of the light product (for recycling to the anode of the fuel cell). If the heavy reflux product stream is sufficiently large and the energy consumption of the heavy reflux is compressed, the fuel gas components can be largely removed from the heavy product of carbon dioxide and / or water vapor, so the combustion chamber 206 can be eliminated and replaced with a small catalytic combustion chamber.
The first heat exchanger 256 may be provided for pipes supplying gas, heavy reflux, and outlet pipes communicating with the first valve contact surface 10 to establish a first temperature at the first end of the adsorbers. A second heat exchanger 257 may be provided for the pipes through which the light product passes, light reflux exit tubes and reflux return tubes communicating with the second valve surface 11 to establish a second temperature at the second end of the adsorbers. A third heat exchanger 258 may be provided for transferring heat from the anode outlet pipe 255 to the light reflux outlet tubes in communication with the inputs of the stages of the light reflux dilator 140 such that the high-grade heat from the fuel cell stack is restored at least in part in the expander 140.
The gas turbine assembly 208 includes a compressor 260 and a turbine 262 coupled to a motor / generator 264 by a shaft 266 and a heavy product compressor 244 and a light reflux expander 140 by a shaft 267. The ambient air is introduced into the compressor 260 by an inward- And is compressed to operating pressure to flow through conduit 272 to combustion chamber 206. Combustion chamber 206 burns residual amounts of fuel (including some amount of hydrogen and unreduced carbon monoxide and fuel) in the flow of a heavy product rich in carbon dioxide. The catalyst may be provided in the combustion chamber 206 to provide a stable combustion with high inert concentrations, or auxiliary fuel may be added thereto. According to the implementation example shown in FIG. 6, the hot gas (i.e., the combustion product) exiting the combustion chamber 206 through the pipe 280 is cooled in the recuperative heat exchanger 285 to about the operating temperature of the TECC to enter as cathode gas into the cathode inlet 220 . The cathode gas contains carbon dioxide and residual oxygen, liquefied with water vapor and nitrogen. After circulating through the cathode channel 214 in which some of the oxygen and carbon dioxide is consumed, the depleted cathode gas is transferred from the cathode outlet 222 through the pipe 290 back to the recuperator 285 for reheating to an elevated temperature at the turbine inlet to flow through the pipe 291 to the turbine 262 After expansion through the turbine 262, the cathode exhaust gas is removed through the conduit 292, where the next heat exchange will preferably take place to achieve the most efficient heat recovery, for example, to heat the gas supplied to the gas inlets 230 and 240. Thus, the turbine 262 drives the turbine unit 208.
According to another embodiment (not shown), a portion of the hot gas (i.e., the combustion product) exiting the combustion chamber 206 can be directed directly to the turbine 262 without passing through the cathode conduit 214. In a further embodiment, a second gas stream of the heavy product From the APA unit 204 to the second combustion chamber and then introducing the hot combustion product directly into the turbine 262.
And FIG. 6 shows the removal of water from the heavy product in conduit 242, either before compression by the CO2 compressor 244, as shown in FIG. 6, or after compression if a vacuum pump is used as compressor 244, as shown in FIG. Condenser 320 may be provided in conduit 242 to remove water and to cool the gas of the heavy product to reduce the compression power required for compressor 244. Liquid water is removed through drain 321. Condensation temperature may be set by coolant 322. For recuperative heat exchange between tubes 242 and 246, a fourth heat exchanger 325 can be provided.
7 shows several alternative features and improvements. This figure shows a thermally integrated reformer. The already compressed fuel and water (or steam) are supplied from the supply pipe 300, passing through the recuperator 302 to recover heat from the expanded cathode waste gas in the pipe 292 and then through the recuperator 285 to achieve an elevated conversion temperature (about 800 ° C to 1200 ° C.) to enter the catalytic conversion reactor 310. The endothermic conversion reaction reduces the temperature of the supplied synthetic gas to about the temperature of the TERC, and this synthetic gas is supplied through the pipe 240 to the feed gas generation chamber in the first contact surface 10 of the rotating valve of the APD unit 204.
A further feature in FIG. 7 is the provision of an auxiliary mechanical pressure boosting means for the anode circuit, such as an auxiliary compressor 330, which is directly driven by a light reflux expander 140 through a shaft 267. The pressure of the re-compressed anode gas from the pipe 255 rises again to more High pressure by the auxiliary compressor 330 and supplied through the pipe 331 to the supply chamber of the feed gas in the first contact surface 10 of the rotating valve. A portion of the outgoing anode gas in conduit 255 can be directly fed through conduit 333 to the pressurizing chamber of the feed gas. In this example, the only energy source for the sub compressor 330 is the expander 140, which in this example is located separately from the gas turbine assembly 208.
FIGS. 8 and 9 show further exemplary embodiments involving vacuum adsorption using a pressure difference (VARD) to further increase the partial pressures of oxygen and carbon dioxide in the cathode channel in order to increase the electromotive force of the cell and thus reduce the load of additional power generation using Of the discharged heat, which generally increases the efficiency of the installation. In FIGS. 8 and 9, as in FIGS. 6 and 7, various parts of the recuperative heat recovery and the condensation of water from the heavy product are shown in a simplified schematic form.
The apparatus 400 for the oxygen APD or VARP includes a rotary module 401 with a selective nitrogen adsorbent in the adsorbers 403, a first rotating valve contact surface 410, and a second rotational valve contact surface 411. The first rotary valve contact surface 410 receives the compressed air supplied to the feed gas generation chamber from the air compressor 260 through the pipe 420 and discharges the spent nitrogen-enriched air from the exit chamber through the pipe 422 to the vacuum pump 424 (optionally included for the VFD or excluded for simple APD) For release into the atmosphere and any other use for moderately enriched nitrogen. The second rotor valve contact surface 411 sends oxygenated light product, for example 90% purity, a check valve 430 in conduit 431 to an oxygen compressor 432 that supplies oxygen under pressure at least equal to the working pressure of the fuel and energy complex, into conduit 434 and then into chamber Of the combustion 206. In the second contact surface 411 of the rotary valve, and the light reflux pressure reduction chokes 436 for the light reflux steps are provided.
According to the embodiment variant shown in FIGS. 8 and 9, the anode waste gas leaving the anode outlet 218 is directly introduced into the combustion chamber 206 without first passing through the hydrogen APD unit. The waste anode gas can then be burned with the oxygen-rich stream produced by the 400 APD unit of oxygen.
The oxygen enrichment of the air provided by the combustion chamber 206 can substantially reduce the inert saturation of nitrogen and argon in the cathode channel, thereby increasing the electromechanical energy conversion as described above. The working medium for the gas turbine expander 262 is thus a highly concentrated carbon dioxide with only very small amounts of atmospheric gases. In addition, oxygen enrichment can provide a more complete combustion without a catalyst or with fewer catalysts, and it can substantially eliminate toxic emissions.
9 shows an additional feature that part of the enriched oxygen from the APA unit 400 is used to treat the fuel either inside the plant, as shown here, or externally, as in the example where coal gasification is used to generate a synthetic feed gas. Here, a portion of the compressed oxygen in the pipe 434 is transferred through the pipe 440 to the reformer 310, which here is an autothermal conversion plant for natural gas with steam.
FIG. 10 shows a simplified schematic diagram of an embodiment 450 of a TETO system to which gas is supplied through a fuel inlet 230 (which may be natural gas, syngas, or hydrogen). Embodiment 450 includes an oxygen VARD whose compression equipment is primarily driven by a regenerative gas turbine cycle using anode gas as a working fluid for regenerating the waste heat of a fuel cell stack as a cycle for generating additional power using waste heat to control the compressor's auxiliary loads. Alternatively, the enriched oxygen can be supplied by the positive pressure (APD) process, as shown in FIG. 4A. The components and numerals generally correspond to the above description for FIGS. 6 and 9. The systems shown in FIGS. 10-14 are only examples, and other systems with different arrangement of devices and pipes or with additional devices and pipes may be used, or With fewer devices and pipes.
The solid oxide fuel cell stack 502 includes a solid oxide electrolyte membrane 510 disposed between the anode channel 512 and the cathode channel 514. The anode channel has an input 516 and an output 518 connected by the anode circuit 519, and the cathode channel 514 has an input 520 and an output 522. If Fuel is natural gas, it undergoes conversion within the anode channel 512, while an appropriate vapor concentration is maintained in the anode circuit 519 to prevent carbon deposition.
The heavy product gas from the first APA plant partially exits through a pipe 455 extending from the pipe 242 and carrying a gas that exits the anode circuit to the combustion chamber 206. The cathode residual gas can be used as an oxidizer in the combustion chamber 206 and is transmitted from the cathode outlet 522 Tube 457 into the combustion chamber. The volatile gas from the combustion chamber 206 is discharged by the outlet pipe 459 after the heat recovery in the heat exchanger 460 where the light reflux gas undergoes increased heating before entering the stage of the light fraction expander 140. The working medium in the expander 140 is a mixture of steam and hydrogen if the fuel is hydrogen, and including carbon dioxide, if the fuel is methane or syngas, which are introduced through the fuel supply inlet 230.
The operating temperature of the adsorber of the first APD can be close to the ambient temperature, in which case the heat exchangers 256 and 257 will be heat recovery heaters. Alternatively, the first APA installation can operate at an elevated temperature, the second temperature near the second valve contact surface being preferably raised relative to the first temperature near the first valve contact surface, so that the adsorber rotor functions as a thermal rotary regenerator.
In one embodiment, the first adsorption zone 26 operates at a temperature range substantially from ambient temperature to about 300 ° C using alumina, 13X zeolite or at least a mildly hydrophobic zeolite, such as zeolite Y, as an adsorbent. The second adsorption zone 27 can operate in a temperature range of about 300 ° C to 500 ° C using, for example, alumina or activated hydrotalcite as an adsorbent. The third adsorption zone 28 can operate at a temperature of about 530 to 800 ° C. using, for example, alumina or superstable hydrotalcite of zeolite Y. Alternatively, the third zone 28 may contain (in place of the adsorbent) a substantially non-absorbent ceramic or metallic material selected For use in the high-temperature zone of a rotating regenerator.
11 shows a simplified schematic diagram of another embodiment 475 of a TETO fuel cell system for which fuel is hydrogen. This implementation example is particularly useful for smaller scale installations that require high efficiency. In Embodiment 475, the Stirling engine 480 is used as a thermal power generation system using the waste heat to recover the waste heat. The engine 480 has a hot end 481 in which the operating environment of the Stirling cycle is expanded to take heat from the thermally insulated jacket 482 surrounding the fuel cell stack. The engine 480 has a cold end 483 in which the Stirling cycle working medium is compressed to remove heat substantially at ambient temperature from the cooler 484. Compressed hydrogen can be used as a working medium for the Stirling cycle.
The Stirling engine may have a crank mechanism 485 for a drive shaft 486 coupled to an anode gas recirculation fan 490, a supply fan 260 for oxygen APD, optionally included by an AVA vacuum pump 424 and optionally an oscillator 264. Alternatively, a mechanism A freely floating piston of the Stirling engine in order to perform all or some of the described compression loads directly, without being connected by a shaft.
12 shows a simplified schematic diagram of an example embodiment 500 of a TETO system to which externally generated and purified hydrogen is fed through an inlet 230. Embodiment 500 shows an oxygen VARD where the compression equipment is mainly driven by autonomous gas turbines (turbo charging units) that regenerate the waste heat of the fuel cell stack as a cycle of additional power generation using the waste heat used only for auxiliary compression loads. The enriched oxygen can alternatively be supplied by the AAD process at positive (excess) pressure as shown in FIG. 4A.
The solid oxide fuel cell stack 502 includes a solid oxide electrolyte membrane 510 disposed between the anode channel 512 and the cathode channel 514. The anode channel has an input 516 and an output 518 connected by an anode circuit 519, and the cathode channel 514 has an input 520 and an output 522 connected by a cathode Loop 523. The anode and cathodic circuits pass through a heat exchanger 525 to drain off the waste heat of the battery at substantially the operating temperature of the fuel cell. Recirculation fans (or ejectors) 526 and 527 can be provided to generate a recycle stream in the anode and cathode circuits, respectively, if recirculation is required.
The oxygen cardiovascular oxygen equipment works as shown in FIGS. 4B and 5A with changes, as described below. The supply fan 530 supplies air to the inlet of the compressor 101 for the feed-detachable flow. The fan 530 is driven by an electric motor (or internal combustion engine) 531 that is necessary to start the turbines which drive the compressor 101 and the vacuum pump 103. The bypass check valve 532 is provided to stop the fan 530 as necessary when the system 500 is fully started and The temperature reaches the working temperature.
The feed compressor 101 includes low pressure stages supplying air to the oxygen unit 401 for oxygen, for example through a pipe 181 as shown in FIGS. 4A or 4B, and a higher pressure stage 538 that supplies additional compressed air as a working fluid for Heat recovery through the pipe 540 to the first end 541 of the first heat recuperator 542, which has a second end 543, at a temperature approaching the operating temperature of the fuel cell stack. The working medium for heat recovery is heated in the recuperator 542 and then by the heat exchanger 525 before entering the inlet 549 of the first expander turbine 550. After expansion in the first turbine 550, the working medium for heat recovery is transferred by the pipe 551 to an additional heating in the heat exchanger 525 before being fed to the inlet 559 of the second expander turbine 560. After the working medium for heat recovery expands substantially to atmospheric pressure in the second turbine 560, it is transported through the pipe 561 through a recuperator 542 where its remaining heat content is regenerated to heat the air in the pipe 540 and rich oxygen in the pipe 567, and then used The working medium is removed through pipe 565.
In the example of FIG. 12, the first turbine 550 is used to drive the feed compressor 101 in the turbo charging unit 570, and the second turbine 560 is used to drive the vacuum pump 103 in the turbo charging unit 572. It is understood that the use of the first and second turbines can have an inverse Order and that the electric generator and can be connected to each of these turbines or to a third turbine. In addition, turbines can receive a working medium for heat regeneration in parallel, rather than in rows. Work in rows with heating is more effective from the point of view of thermodynamics. And it is possible to provide intercooling between the compressor stages 101.
The enriched oxygen from the VWD unit 401 is supplied to the oxygen compressor 145 via a check valve 430 to further increase the rich oxygen pressure substantially to the operating pressure of the cathode channel circuit 514. According to the selected operating pressure, the compressor 145 can have several stages and the stages can be operated from a corresponding Engine or other drive means. 12 shows the reflux condenser turbine 140 as an energy source for the oxygen compressor 145, as shown in FIG. 5A. This device achieves the highest efficiency of energy recovery from the pressure drop of the light reflux gas and has the advantage that the oxygen compressor 145 is driven from the oxygen expander 140 in the autonomous rotor assembly that can be enclosed in a sealed enclosure. For high operating pressures (ie> 5 bar), it may be necessary to provide additional oxygen compression steps with another energy source or auxiliary to expand the light reflux.
Since enriched oxygen supplied by simple HIPS systems typically contains about 5% argon and a small amount of nitrogen impurities, it may be advantageous to remove the purge stream from the cathode loop 523 through the purge pipe 580. The pipe 580 passes through the recuperator 542 to recover the energy of enthalpy And includes a throttle valve 581 or other means for reducing the pressure in front of the purge flow outlet 582. If desired, all or part of the purge stream can be vented to the atmosphere, or all or part of the purge stream can be recirculated from the orifice 582 to the overpressure generating chamber for the feed gas of the VWD units 401 to retain enriched oxygen as well and to regenerate the energy of the compressors in the process VARD. The fractional amount of the purge stream that is recycled in the VARD unit will depend on the analysis that determines the allowable accumulation of the argon impurity returned to the process in the anode circuit. With the purge gas recirculation, a moderate concentration of argon can be recovered as a useful commercial by-product of the 500 power plant.
A second heat recovery unit 590 may be provided for heating the hydrogen fuel supplied to the anode side through the fuel inlet 230 for pressure at the pressure corresponding to the working pressure of the anode channel. The first end 591 of the recuperator 590 may have an ambient temperature (or a hydrogen storage temperature). The second end 592 of the recuperator 590 has a battery operating temperature. In order to prevent undesirable accumulation of water vapor as the reaction product of the fuel cell in the anode channel, the fraction of the returned anode gas is withdrawn through the condensation circuit including the cooling pipe 593, through the recuperator 590 to the condenser 595 and the reheating tube 596 through the recuperator 590 back to the inlet 516 Anode. A cooling coil 597 and a fluid outlet throttle valve 598 are included in the condenser 595.
After examining FIG. 12, it will be appreciated that the VARP for oxygen and the associated compression equipment provided therein as rotor turbo charging units for recovering the waste heat of the fuel cell stack can be used in fuel cell systems for working with a concentrated CO stream 2 , and fed to the cathode circuit, so that it is possible to obtain two moles of CO 2 for each mole of O 2 consumed in the cathode reaction of the TERC.
FIGS. 13 and 14 show exemplary embodiments of the 600 TETO where the conversion of fuel natural gas to steam takes place. Desulphurized natural gas is introduced substantially at the working pressure of the fuel cell to the inlet 601 and from there through the pipe 602 to the first end 603 of the reformer recuperator 604 that heats the incoming natural gas as it flows to the second end 605 of the reformer recuperator. The second end 605 is at an elevated temperature approaching the operating temperature of the fuel cell stack. The heated natural gas flows through the pipe 610 from the second end 605 of the recuperator to the inlet 619 of the reformer reactor 620. The natural gas reacts with the steam in the reactor 620, producing hydrogen containing synthetic gas, carbon monoxide and carbon dioxide; Some carbon monoxide may react with steam, producing more hydrogen.
Synthetic gas produced in the reactor 620 comes from its outlet 621 through the pipe 622 back through the recuperator of the reformer (or part thereof) to cool the synthesis gas to the operating temperature of the first APD unit (to extract carbon dioxide from the hydrogen anode fuel) and then enters Through the pipe 623 to the feed chamber of the first APA apparatus 204 for H 2 .
As described above, the operating temperature of the first APA unit 204 may be close to the temperature of the fuel cell stack of the reformer reactor. For example, the operating temperature of the HA unit for H 2 can be in the range of 100 to about 200 ° C. of the fuel cell stack of a reformer reactor. If the operating temperature of the first APD unit is high enough for the reaction of water vapor with methane (at least 600 ° C) and a suitable catalyst is included in the adsorbers, the steam reforming reaction can be carried out as a high sorption reaction in the ARD unit in the adsorber zone at a temperature Which approximates or exceeds 600 ° C. At lower temperatures of the first APD installation (eg, at least about 200 ° C to 300 ° C), the water vapor conversion can be performed by an enhanced sorption reaction over a suitable catalyst within the adsorbers. At even lower temperatures, reaching the ambient temperature, the first APD unit can work with conventional adsorbents to adsorb CO 2 from hydrogen.
The enriched hydrogen product from the first APA unit is supplied as a light product through the pipe 630 to the anode loop pipe 632 and then, after further pressure increase by the anode recirculation fan 526, to the fuel cell anode inlet 516. The anode gas is removed from the outlet of the anode 518 into the pipe 640 that passes through the reformer reactor heater 642 and from there to the anode circuit pipe 632.
The enriched carbon dioxide from the first APA plant is removed as a heavy product at a lower pressure through the conduit 242 to the inlet of a carbon dioxide compressor (or vacuum pump) 244 that serves as a heavy reflux compressor and compresses the rich carbon dioxide stream back to the top pressure of the cycle First installation of ARD. A part of the CO 2 is returned back to the reaction unit in the APD unit via conduit 247 to the heavy reflux chamber of the first APD unit. The remainder of the compressed CO 2 is removed through the pipe 650, in this case entering the TETO plant.
In the opposite case, upon arrival of the TERC plant (which can be represented in FIG. 13), this CO 2 vapor will be transported through conduit 651 (shown in dotted line in FIG. 13) for mixing with rich oxygen flow between non-return valve 430 and compressor 145 Enriched oxygen to provide the corresponding cathode oxidizer stream of the TERC with two moles of CO 2 for each consumed mole of O 2 .
The carbon dioxide compressor or heavy reflux compressor 244 is shown in FIGS. 13 and 14, where it operates from a third expander turbine 670 in an autonomous rotor turbo charging unit 672. In FIG. 13, a third turbine 670 is shown in parallel operation with the first turbine 550, both That the inlet pipe 675 to the turbine 670 is connected to the pipe 540 which is the inlet to the turbine 550 and the outlet pipe 676 from the turbine 670 is connected to the pipe 551 which is the outlet from the turbine 550.
In FIG. 14, all three turbines operate in rows for stepwise expansion of the working medium air for heat recovery. The pipe 540 inflates the heated air to the inlet of the turbine 550, then the pipe 677 admits partially expanded air to the inlet of the turbine 670, and the pipe 678 admits additional expanded air to the heat exchanger 526 for reheating and then through the pipe 551 to the inlet of the turbine 560 for final expansion to atmospheric pressure . It is desirable that the pipe 677 and extend through the circuit of the heat exchanger 525 for reheating, so that the inlet to each stage of the turbine is heated to the highest temperature that can be reached.
Overheating or reheating in FIGS. 13 and 14, and may be provided by the combustion chamber of the anode residual gas (or off-gas of the first APA), which is not shown in these simplified schematic representations. The burner for the anode residual gas will not emit any toxic choices if the oxidant is highly enriched in oxygen produced by the 401 ARD or VARP unit for oxygen. Since the anode residual gas is mainly CO 2 with a very low calorific value of the fuel components, the enriched oxygen is desirably used as an oxidant to avoid or reduce the need for a catalyst that will be needed to burn a gas having an extremely low VTI content ) in the air.
В Фиг.13 топливный газ в анодном канале включает водород, а и возможно будет включать моноксид углерода в качестве компонента топлива, так что водяной пар и углекислый газ непрерывно образуются как продукты реакции. Проскальзывающая струя анодного газа непрерывно удаляется с пространства вблизи выхода 518 анода по трубе 680 и охлаждается через рекуператор 604 реформинг-установки до надлежащей температуры для поступления в камеру подачи на первую установку АРД по трубе 681. В этом примере реализации первая установка АРД таким образом получает три подаваемых потока для подъема концентрации CO 2 : (1) проскальзывающую струю анодного газа в трубе 680, (2) синтетический газ реактора конверсии с водяным паром в трубе 622 и (3) концентрированный СО 2 тяжелой флегмы из трубы 247. Внутри процесса АРД каждый адсорбер должен получать эти три подаваемых потока в том же порядке (из трубы 681, затем трубы 623, затем трубы 247), чтобы сохранить правильную последовательность подъема концентрации CO 2 . Следует следить за координацией водяного пара в примере реализации Фиг.13, чтобы поддерживать адекватное соотношение пара/углерода в реформинг-установке и в анодном канале для предотвращения любого отложения углерода и последующей каталитической дезактивации. Водяной пар должен подаваться с подаваемым газом, содержащим природный газ, или в него. Может быть необходимо использовать до некоторой степени гидрофобный адсорбент в первой установке АРД или же впрыскивать дополнительный водяной пар в анодный канал топливного элемента. В этом примере реализации разделение менее четкое, поскольку, когда СО 2 извлекается и концентрируется, нет необходимости отделять СО.
В Фиг.14 топливный газ в анодном канале предусматривается в качестве очищенного водорода, который был отделен первой установкой АРД, сконструированной и работающей таким образом, чтобы удалять примеси СО и СН 4 , а и CO 2 . (Снова, горелка для остаточного газа может использоваться для сжигания остаточных топливных компонентов в получаемом потоке тяжелой флегмы, обогащенном CO 2 , при этом полезное тепло применяется для подогрева или повторного нагрева регенерации отходящего тепла в турбинах расширителя). Первая установка АРД Фиг.14 получает два питающих потока, синтетический газ реактора реформинг-установки для конверсии метана с водяным паром, поступающим из трубы 623, после чего поступает сжатая тяжелая флегма из трубы 247, и не имеет возврата в реакцию с анодного контура, на которую он направил очищенный водород. В этом случае в анодном канале совсем не образуется СО 2 , единственным продуктом реакции здесь является водяной пар. Водяной пар может быть извлечен из анодного контура рекуперативным теплообменом в конденсатор, как показано в Фиг.12, но в Фиг.14 водяной пар извлекается ротационным осушительным влагообменником 690, подсоединенным между трубами 610 и 640. Влагообменник 690 включает кольцо осушителя 691, находящееся в контакте с контактными поверхностями клапана 692 и 693. Влагообменник передает водяной пар продукта анода из трубы 640 выхода анода на трубу подачи 610 реактора для конверсии с водяным паром, чтобы удалить водяной пар из контура анода, обеспечивая при этом весь водяной пар, необходимый для конверсии метана с водяным паром.
В Фиг.14 труба 640 переносит влажный анодный газ через контактную поверхность 692 клапана в одну сторону кольца осушителя, откуда высушенный анодный газ подается через контактную поверхность 693 клапана в трубу 640', соединенную с трубой 632 контура анода. Труба 610 подает увлажненный конверсией с водяным паром газ через контактную поверхность 692 клапана с другой стороны кольца осушителя, к которому подавался сухой подогретый природный газ через контактную поверхность клапана 693 из трубы 610'. Движущая сила для переноса влаги может быть увеличена либо установлением более высокой температуры в трубе 610 относительно более низкой температуры в трубе 640, либо установлением более высокого давления в трубах 640 и 640' относительно более низкого давления в трубах 610 и 610'.
Понятно, что может быть много альтернативных решений и вариантов описанных систем и процессов.
Например, описанные системы и процессы могут быть использованы в связи с разными топливными элементами, питающими газами и установками АРД, например такими, как
А. Непосредственная работа на природном газе топливных элементов ТЭРК или ТЭТО с установками АРД как на аноде, так и на катоде.
Б. Работа ТЭРК или ТЭТО на синтетическом газе, вырабатываемом, например, газификацией угля кислородной продувкой, с установками АРД как на аноде, так и на катоде.
В. Косвенная работа ТЭТО на водороде, полученном конверсией из природного газа с установками АРД на реформинг-установке (отвод СО 2 ), аноде (отвод H 2 O, который и может выполняться конденсацией) и катоде (отвод азота).
Г. Работа ТЭТО на водороде из любого источника, с установками АРД, на аноде (отвод H 2 O, который и может быть выполнен конденсацией) и катоде (отвод азота).
Определение кпд на основе более низкой теплоты сгорания топлива находится в пределах приблизительно 60% для примеров реализации ТЭРК, 70% для ТЭТО, работающего на ископаемом топливе, и 80% для ТЭТО, работающего на водороде, с коммерчески приемлемыми плотностями тока.
Для систем ТЭРК описанные системы и процесс могут избежать скопления CO 2 на аноде, где вырабатывается CO 2 , реакциями СН 4 и СО, а и переносом карбоната через электролит; в то же время устраняется скопление инертного азота на катоде.
Некоторые описанные примеры реализации ТЭТО имеют следующие потенциальные преимущества:
1. Проблема снижения напряжения элемента при чрезмерно высокой температуре может быть преодолена манипулированием парциальными давлениями.
2. Массовый расход CO 2 , выходящего из анода, на единицу топлива может превышать приблизительно только на 20% массовый расход CO 2 в аноде ТЭРК, в который из электролита подается большее количество СО 2 , поэтому компрессор тяжелой флегмы или вакуумный насос может быть гораздо меньше и требовать меньше электроэнергии.
3. Высокотемпературное (высокопотенциальное) отходящее тепло улучшает кпд турбозарядных агрегатов регенерации тепла.
Несмотря на то, что наше изобретение показано и описано со ссылкой на несколько примеров реализации, специалистам в данной области должно быть понятно, что изобретение может иметь модификации в устройстве и деталях, не выходящие за пределы этих принципов.
CLAIM
1. Система, вырабатывающая электрический ток, содержащая, по меньшей мере, один топливный элемент, работающий при температуре, по меньшей мере, приблизительно 250°С, по меньшей мере, одну газовую систему, выбранную из системы отделения водородосодержащего газа или системы подачи кислородосодержащего газа, соединенную с топливным элементом, при этом система отделения водородосодержащего газа или система подачи кислородосодержащего газа включает в себя, по меньшей мере, одно устройство, выбранное из компрессора или насоса, причем система отделения водородосодержащего газа или система подачи кислородосодержащего газа содержит модуль адсорбции с использованием разности давлений, и приводную систему для компрессора или насоса, которая включает в себя средство для регенерации энергии, выбранное из системы отделения водородосодержащего газа, системы подачи кислородосодержащего газа, тепла топливного элемента или любой их комбинации.
2. Система по п.1, в которой топливным элементом является топливный элемент из расплавленного карбоната или топливный элемент из твердого оксида.
3. Система по п.1, в которой топливный элемент работает при температуре, по меньшей мере, приблизительно 600°С.
4. Система по п.1, в которой средство для регенерации энергии содержит, по меньшей мере, одну систему, выбранную из газовой турбины, теплообменника или двигателя Стирлинга.
5. Система по п.1, в которой насос является вакуумным насосом.
6. Система, вырабатывающая электрический ток, содержащая, по меньшей мере, один топливный элемент, работающий при температуре, по меньшей мере, 250°С, по меньшей мере, одну газовую систему, выбранную из системы отделения водородосодержащего газа или системы подачи кислородосодержащего газа, соединенную с топливным элементом, причем система отделения водородосодержащего газа или система подачи кислородосодержащего газа содержит модуль адсорбции с использованием разности давлений, и систему газовой турбины, соединенную с системой отделения водородосодержащего газа или с системой подачи кислородосодержащего газа, в которой система газовой турбины работает от энергии, регенерируемой средством, выбранным из системы отделения водородосодержащего газа, системы подачи кислородосодержащего газа, тепла топливного элемента или любой их комбинации.
7. Система по п.6, в которой модуль адсорбции с использованием разности давлений выполнен с возможностью подачи водородосодержащего газа на топливный элемент, при этом модуль адсорбции с использованием разности давлений включает в себя первый адсорбент и, по меньшей мере, один второй материал, выбранный из второго адсорбента, катализатора конверсии с водяным паром или катализатора реакции конверсии водяного газа.
8. Система по п.7, в которой первый адсорбент преимущественно адсорбирует углекислый газ по сравнению с водяным паром.
9. Система по п.8, в которой первый адсорбент содержит активированный щелочью материал, а катализатор содержит Cu-ZnO, карбонильный комплекс переходного металла или катализатор, содержащий металл из группы переходных металлов, введенный в клетку цеолита.
10. Система по п.6, в которой система газовой турбины дополнительно соединена, по меньшей мере, с одним устройством, выбранным из компрессора, насоса или вспомогательного устройства.
11. Система, вырабатывающая электрический ток, содержащая, по меньшей мере, один топливный элемент, выбранный из топливного элемента из расплавленного карбоната или топливного элемента из твердого оксида, по меньшей мере, одну газовую систему, выбранную из системы отделения водородосодержащего газа или системы подачи кислородосодержащего газа, соединенную с топливным элементом, причем система отделения водородосодержащего газа или система подачи кислородосодержащего газа содержит модуль адсорбции с использованием разности давлений, и систему газовой турбины, соединенную с системой отделения водородосодержащего газа или с системой подачи кислородосодержащего газа, в которой система газовой турбины работает от энергии, регенерируемой средством, выбранным из системы отделения водородосодержащего газа, системы подачи кислородосодержащего газа, тепла топливного элемента или любой их комбинации.
12. Система, вырабатывающая электрический ток, содержащая, по меньшей мере, один топливный элемент, работающий при температуре, по меньшей мере, приблизительно 250°С, по меньшей мере, одну газовую систему, выбранную из системы отделения водородосодержащего газа или системы отделения кислородосодержащего газа, соединенную с топливным элементом, в которой система отделения водородосодержащего газа выполнена с возможностью выработки первого потока отходящего газа, при этом система отделения кислородосодержащего газа выполнена с возможностью выработки второго потока отходящего газа, и систему газовой турбины, соединенную, по меньшей мере, с одной из систем, системой отделения водородосодержащего газа или системой отделения кислородосодержащего газа, при этом система газовой турбины получает, по меньшей мере, один из первого потока отходящего газа или второго потока отходящего газа.
13. Система по п.12, в которой топливный элемент работает при температуре, по меньшей мере, приблизительно 600°С.
14. Система по п.12, в которой система отделения водородосодержащего газа содержит первый адсорбционный модуль, а первый поток отходящего газа обогащен углекислым газом.
15. Система по п.14, дополнительно содержащая камеру сгорания, которая образует первый вход для приема первого потока отходящего газа и выход для удаления потока газа продукта сгорания.
16. Система по п.15, дополнительно содержащая первую трубу, через которую сообщаются по текучей среде выход камеры сгорания и входное отверстие катода, образованное топливным элементом, вторую трубу, через которую сообщаются по текучей среде выходное отверстие катода, образованное топливным элементом, и система газовой турбины, и, по меньшей мере, один теплообменник, вмещающий в себя, по меньшей мере, часть первой трубы и, по меньшей мере, часть второй трубы.
17. Система по п.15, дополнительно содержащая, по меньшей мере, одну трубу, через которую сообщаются по текучей среде выход камеры сгорания и система газовой турбины.
18. Система по п.12, в которой система газовой турбины включает в себя, по меньшей мере, одно устройство, выбранное из компрессора и вакуумного насоса.
19. Система по п.14, в которой первый модуль адсорбции содержит вращающийся модуль адсорбции с использованием разности давлений.
20. Система по п.19, в которой система газовой турбины включает в себя, по меньшей мере, одно устройство, соединенное с вращающимся модулем адсорбции с использованием разности давлений, при этом устройство выбрано из компрессора и вакуумного насоса.
21. Система, вырабатывающая электрический ток, содержащая, по меньшей мере, один топливный элемент, выбранный из топливного элемента из расплавленного карбоната и топливного элемента из твердого оксида, по меньшей мере, один модуль адсорбции с использованием разности давлений, который выполнен с возможностью выработки потока газа, обогащенного кислородом, для подачи на топливный элемент, и поток отходящего газа тяжелого продукта, и по меньшей мере, один вакуумный насос, соединенный с модулем адсорбции с использованием разности давлений, для извлечения потока газа тяжелого продукта.
22. Система, вырабатывающая электрический ток, содержащая источник кислородосодержащего газа, по меньшей мере, один модуль отделения водородосодержащего газа, который выполнен с возможностью выработки потока газа, обогащенного водородом, и потока газа, обогащенного углекислым газом, причем модуль отделения водородосодержащего газа содержит модуль адсорбции с использованием разности давлений, устройство сгорания для получения потока газа продукта сгорания из кислородосодержащего газа и потока газа, обогащенного углекислым газом, и, по меньшей мере, один топливный элемент из расплавленного карбоната, имеющий входное отверстие катода для приема потока газа продукта сгорания и входное отверстие анода для приема потока газа, обогащенного водородом.
23. Система по п.22, в которой модуль адсорбции с использованием разности давлений соединен с источником кислородосодержащего газа и выполнен с возможностью вырабатывания потока газа, обогащенного кислородом, для подачи на устройство сгорания.
24. Система по п.22, в которой топливный элемент из расплавленного карбоната имеет выходное отверстие для удаления, по меньшей мере, одного потока отходящего газа топливного элемента, при этом система дополнительно содержит первый теплообменник, который принимает поток отходящего газа топливного элемента и поток газа продукта сгорания.
25. Система по п.24, дополнительно содержащая реактор, вырабатывающий водородосодержащий газ, и трубу для подачи смеси углеводородного топлива - воды на реактор, вырабатывающий водородосодержащий газ, при этом, по меньшей мере, часть трубы для смеси углеводородного топлива - воды расположена внутри первого теплообменника.
26. Система по п.25, дополнительно содержащая модуль адсорбции с использованием разности давлений, соединенный с источником кислородосодержащего газа, который может вырабатывать поток газа, обогащенного кислородом, для подачи на реактор, вырабатывающий водородосодержащий газ.
27. Система, вырабатывающая электрический ток, содержащая, по меньшей мере, один топливный элемент, имеющий выходное отверстие анода для удаления анодного отходящего газа и входное отверстие катода, при этом топливный элемент работает при температуре, по меньшей мере, приблизительно 250°С, модуль адсорбции с использованием разности давлений, который выполнен с возможностью выработки потока газа, обогащенного кислородом, и устройство сгорания для получения потока газа продукта сгорания из потока газа, обогащенного кислородом, и анодного отходящего газа, и трубу, через которую сообщаются по текучей среде устройство сгорания и входное отверстие катода для топлива, для подачи потока газа продукта сгорания на катод топливного элемента.
28. Способ получения, по меньшей мере, одного подаваемого потока, по меньшей мере, на один топливный элемент, работающий при температуре, по меньшей мере, приблизительно 250°С, включающий обеспечение, по меньшей мере, одной из системы отделения водородосодержащего газа или системы подачи кислородосодержащего газа, соединенной с топливным элементом, при этом система отделения водородосодержащего газа или система подачи кислородосодержащего газа включает в себя, по меньшей мере, одно устройство, выбранное из компрессора или вакуумного насоса, причем система отделения водородосодержащего газа или система подачи кислородосодержащего газа содержит модуль адсорбции с использованием разности давлений, регенерацию энергии средством, выбранным из системы отделения водородосодержащего газа, системы подачи кислородосодержащего газа, тепла топливного элемента или любой их комбинации, и осуществление работы компрессора или вакуумного насоса, по меньшей мере, частично на регенерируемой энергии, для обеспечения, по меньшей мере, одного потока, подаваемого на топливный элемент.
29. Способ по п.28, при котором регенерация энергии и работа включает введение, по меньшей мере, одного отходящего потока из топливного элемента, системы отделения водородосодержащего газа или системы подачи кислородосодержащего газа, по меньшей мере, в один агрегат, выбранный из теплообменника и газовой турбины.
30. Способ по п.28, при котором топливный элемент работает при температуре, по меньшей мере, приблизительно 600°С.
31. Способ получения, по меньшей мере, одного потока топлива, по меньшей мере, на один топливный элемент, работающий при температуре, по меньшей мере, приблизительно 250°С, включающий создание первой разности давлений в первом потоке газа, содержащем топливо, в условиях, достаточных для разделения первого потока газа, содержащего топливо, на первый поток обогащенного топливом газа и первый поток обедненного топливом газа, введение, по меньшей мере, одного из первого потока обогащенного топливом газа или первого потока обедненного топливом газа в первый модуль адсорбции с использованием разности давлений для создания первой разности давлений и введение первого потока обогащенного топливом газа в топливный элемент.
32. Способ по п.31, при котором создание первой разности давлений включает адсорбцию с использованием разности давлений, при этом первый поток газа, содержащего топливо, содержит поток водородосодержащего газа, поток обогащенного топливом газа содержит поток обогащенного водородом газа, поток обедненного топливом газа содержит поток газа, обогащенного углекислым газом, и введение модуля адсорбции с использованием разности давлений включает введение потока газа, обогащенного углекислым газом, в газовую турбину в качестве рабочей среды для осуществления адсорбции с использованием разности давлений.
33. Способ получения кислородосодержащего потока газа и потока газа, содержащего углекислый газ, на катод топливного элемента из расплавленного карбоната, и водородосодержащего потока газа на анод топливного элемента, включающий разделение водородосодержащего потока газа на поток газа, обогащенного водородом, и поток газа, обогащенного углекислым газом, причем разделение происходит посредством адсорбции с использованием разности давлений, сжигание смеси потока газа, обогащенного углекислым газом и кислородосодержащего потока газа для получения потока газа продукта сгорания, введение потока газа, обогащенного водородом, в анод топливного элемента и введение потока газа продукта сгорания в катод топливного элемента.
34. Способ по п.33, при котором дополнительно осуществляют кислородное обогащение потока подаваемого воздуха для получения кислородосодержащего потока газа.
35. Способ по п.34, при котором кислородное обогащение включает введение потока подаваемого воздуха в модуль адсорбции с использованием разности давлений для получения потока газа, обогащенного кислородом.
36. Способ по п.33, при котором топливный элемент выделяет, по меньшей мере, один поток отходящего газа топливного элемента, при этом способ дополнительно включает передачу тепла от потока газа продукта сгорания к потоку отходящего газа топливного элемента.
37. Способ по п.36, при котором дополнительно вводят нагретый поток отходящего газа топливного элемента в газовую турбину.
38. Система, вырабатывающая электрический ток, содержащая, по меньшей мере, один топливный элемент, работающий при температуре, по меньшей мере, приблизительно 250°С, систему регенерации тепла топливного элемента, соединенную с топливным элементом, по меньшей мере, одну систему подачи топливного газа, соединенную с топливным элементом, причем система подачи топливного газа содержит модуль адсорбции с использованием разности давлений, и систему газовой турбины, соединенную с системой регенерации тепла топливного элемента и системой подачи топливного газа.
39. Система по п.38, в которой топливный элемент работает при температурах, по меньшей мере, приблизительно 600°С.
40. Система по п.38, в которой система регенерации тепла топливного элемента содержит трубу для рециркуляции, через которую проходит рабочая среда регенерации тепла для передачи тепловой энергии из топливного элемента на энергию расширения газа для системы газовой турбины.
41. Система по п.40, в которой рабочая среда регенерации тепла имеет тепловое сообщение с потоком отходящего газа топливного элемента.
42. Система по п.38, в которой система газовой турбины содержит, по меньшей мере, один насос или компрессор, соединенный с модулем адсорбции с использованием разности давлений, и детандер, соединенный с насосом или компрессором.
43. Система по п.42, в которой модуль адсорбции с использованием разности давлений выполнен с возможностью выработки потока газа, обогащенного кислородом, для подачи на топливный элемент.
44. Система по п.42, дополнительно содержащая первый модуль адсорбции с использованием разности давлений, который выполнен с возможностью выработки потока газа, обогащенного кислородом, для подачи на топливный элемент, и второй модуль адсорбции с использованием разности давлений, который выполнен с возможностью выработки потока газа, обогащенного водородом, для подачи на топливный элемент.
45. Система, вырабатывающая электрический ток, содержащая, по меньшей мере, один топливный элемент, выбранный из топливного элемента из расплавленного карбоната или топливного элемента из твердого оксида, систему регенерации тепла топливного элемента, соединенную с топливным элементом, по меньшей мере, одну систему подачи топливного газа, соединенную с топливным элементом, причем система подачи топливного газа содержит модуль адсорбции с использованием разности давлений, и систему газовой турбины, соединенную с системой регенерации тепла топливного элемента и системой подачи топливного газа.
46. Система, вырабатывающая электрический ток, содержащая, по меньшей мере, один топливный элемент, образующий, по меньшей мере, один вход для приема потока топливного газа и, по меньшей мере, один выход для выведения потока отходящего газа топливного элемента, причем топливный элемент работает при температуре, по меньшей мере, приблизительно 250°С, по меньшей мере, одну систему подачи топливного газа для подачи потока топливного газа на вход топливного элемента, причем система подачи топливного газа содержит модуль адсорбции с использованием разности давлений, систему газовой турбины, соединенную с системой подачи топливного газа, первую трубу, сообщающуюся по текучей среде с выходом топливного элемента, для прохождения через нее потока отходящего газа топливного элемента, вторую трубу для прохождения через нее рабочей среды восстановления тепла и сообщающуюся с системой турбины и первый теплообменник, вмещающий первую часть первой трубы и вторую часть второй трубы.
47. Система по п.46, в которой топливный элемент работает при температуре, по меньшей мере, приблизительно 600°С.
48. Система по п.46, в которой модуль адсорбции с использованием разности давлений выполнен с возможностью выработки потока газа, обогащенного кислородом, для подачи на входное отверстие катода топливного элемента, и система газовой турбины содержит, по меньшей мере, один насос или компрессор, соединенный с модулем адсорбции с использованием разности давлений, и детандер, соединенный с насосом или компрессором, при этом детандер образует вход для приема рабочей жидкости регенерации тепла.
49. Система по п.48, в которой система, вырабатывающая электрический ток, дополнительно содержит источник воздуха для подачи воздуха на модуль адсорбции с использованием разности давлений и на вторую трубу в качестве рабочей среды для регенерации тепла.
50. Система по п.46, в которой первая труба и вторая труба расположены рядом внутри теплообменника так, что тепло передается из отходящего газа катода в первой трубе рабочей среде регенерации тепла во второй трубе.
51. Система по п.46, в которой система подачи топливного газа содержит модуль адсорбции с использованием разности давлений, который выполнен с возможностью вырабатывания потока газа, обогащенного водородом, для подачи на входное отверстие анода топливного элемента, а система газовой турбины содержит, по меньшей мере, один насос или компрессор, соединенный с модулем адсорбции с использованием разности давлений, и детандер, соединенный с насосом или компрессором, при этом детандер образует вход для приема рабочей жидкости регенерации тепла.
52. Система по п.51, дополнительно содержащая систему выработки водородосодержащего газа, соединенную с модулем адсорбции с использованием разности давлений, при этом система выработки водородосодержащего газа образует выход для подачи потока водородосодержащего газа на модуль адсорбции с использованием разности давлений, и вход для приема углеводородного топлива.
53. Система по п.50, дополнительно содержащая третью трубу, сообщающуюся по текучей среде со входом системы выработки водородосодержащего газа, по которой может проходить углеводородное топливо, четвертую трубу, устанавливающую сообщение по текучей среде между выходом системы выработки водородосодержащего газа и входом, образованным в модуле адсорбции с использованием разности давлений, для приема подаваемого потока водородосодержащего газа, и второй теплообменник, вмещающий часть третьей трубы и четвертой трубы, в которой третья труба и четвертая труба расположены рядом так, что тепло передается из подаваемого потока водородосодержащего газа в четвертой трубе углеводородному топливу в третьей трубе.
54. Система по п.48, в которой насос является вакуумным насосом для извлечения потока газа, обедненного кислородом, из модуля адсорбции с использованием разности давлений, а топливный элемент работает при температуре, по меньшей мере, приблизительно 600°С.
55. Система по п.46, в которой топливный элемент образует первый выход для выведения потока отходящего катодного газа, и второй выход для выведения потока отходящего анодного газа, и поток отходящего катодного газа проходит по первой трубе, при этом система, вырабатывающая электрический ток, дополнительно содержит третью трубу, по которой проходит поток отходящего анодного газа, причем часть третьей трубы размещена внутри первого теплообменника.
56. Система по п.46, дополнительно содержащая, по меньшей мере, один второй теплообменник, вмещающий вторую часть первой трубы и второй трубы, при этом система газовой турбины включает в себя, по меньшей мере, две турбины с детандером, и вторая труба устанавливает сообщение между первым теплообменником, вторым теплообменником и двумя турбинами с детандерами.
57. Система по п.46, в которой топливный элемент содержит топливный элемент из твердого оксида или топливный элемент из расплавленного карбоната, система подачи топливного газа содержит первый вращающийся модуль адсорбции с использованием разности давлений для подачи потока газа, обогащенного кислородом, на входное отверстие катода топливного элемента, и второй вращающийся модуль адсорбции с использованием разности давлений для подачи потока газа, обогащенного водородом, на входное отверстие анода топливного элемента, и система газовой турбины соединена с первым вращающимся модулем адсорбции с использованием разности давлений и вторым вращающимся модулем адсорбции с использованием разности давлений.
58. Система по п.46, в которой система подачи топливного газа содержит модуль разделения газа, который выполнен с возможностью выработки потока обогащенного топливом газа для подачи на вход топливного элемента.
59. Способ получения, по меньшей мере, одного потока обогащенного топливом газа, по меньшей мере, на один топливный элемент, работающий при температуре, по меньшей мере, приблизительно 250°С, включающий создание разности давлений в потоке газа, содержащего топливо, в условиях, достаточных для отделения потока обогащенного топливом газа от потока газа, содержащего топливо, причем создание разности давлений включает адсорбцию с использованием разности давлений, введение потока обогащенного топливом газа в топливный элемент, передачу тепла из топливного элемента рабочей среде регенерации тепла, и введение рабочей среды регенерации тепла, по меньшей мере, в один модуль адсорбции с использованием разности давлений для создания разности давлений.
60. Способ по п.59, при котором поток газа, содержащий топливо, содержит воздух, поток обогащенного топливом газа содержит поток газа, обогащенного кислородом, и модуль адсорбции с использованием разности давлений содержит газовую турбину.
61. Способ по п.59, при котором передача тепла включает передачу тепла от потока отходящего газа, по меньшей мере, одного топливного элемента рабочей среде регенерации тепла.
62. Способ по п.60, в котором рабочую среду регенерации тепла расширяют при введении в газовую турбину для приведения в действие компрессора или насоса, вырабатывающего разность давлений.
63. Способ получения, по меньшей мере, одного потока обогащенного топливом газа, по меньшей мере, на один из топливных элементов, топливный элемент из расплавленного карбоната или топливный элемент из твердого оксида, включающий создание разности давлений в потоке газа, содержащего топливо, в условиях, достаточных для отделения потока обогащенного топливом газа от потока газа, содержащего топливо, введение потока, обогащенного топливом газа в топливный элемент, передачу тепла из топливного элемента рабочей среде регенерации тепла и введение рабочей среды регенерации тепла, по меньшей мере, в один модуль адсорбции с использованием разности давлений для создания разности давлений.
64. Способ получения потока газа, обогащенного кислородом, по меньшей мере, на один из топливных элементов, к топливному элементу из расплавленного карбоната или топливному элементу из твердого оксида, включающий обеспечение первого модуля адсорбции с использованием разности давлений, который выполнен с возможностью вырабатывания потока газа, обогащенный кислородом, для подачи на топливный элемент, обеспечение системы газовой турбины, соединенной с первым модулем адсорбции с использованием разности давлений, и циркуляцию потока рабочей жидкости регенерации тепла через систему газовой турбины, в которой часть потока рабочей среды регенерации тепла расположена рядом с потоком отходящего газа, по меньшей мере, одного топливного элемента.
65. Способ по п.64, при котором система газовой турбины содержит, по меньшей мере, один детандер, соединенный с компрессором или насосом, а рабочая среда регенерации тепла вводится в детандер.
66. Способ по п.64, дополнительно включающий нагрев потока газа, обогащенного кислородом, перед подачей на топливный элемент путем расположения части потока газа, обогащенного кислородом рядом, по меньшей мере, с одним из потока рабочей среды регенерации тепла или потока отходящего газа топливного элемента.
67. Способ по п.64, дополнительно включающий обеспечение второго модуля адсорбции с использованием разности давлений, который выполнен с возможностью вырабатывания потока газа, обогащенного водородом, для подачи на топливный элемент, при этом систему газовой турбины дополнительно соединяют со вторым модулем адсорбции с использованием разности давлений.
68. Система, вырабатывающая электрический ток, содержащая, по меньшей мере, один топливный элемент, топливный элемент из расплавленного карбоната или топливный элемент из твердого оксида, и модуль адсорбции с использованием разности давлений, соединенный с топливным элементом, который может вырабатывать водородосодержащий газ для подачи на топливный элемент, причем модуль адсорбции с использованием разности давлений содержит первый адсорбент и, по меньшей мере, один второй материал, выбранный из второго адсорбента и катализатора конверсии с водяным паром или катализатора реакции конверсии водяного газа.
69. The system of claim 68, wherein the first adsorbent predominantly adsorbs carbon dioxide as compared to water vapor.
70. The system of claim 69, wherein the pressure difference adsorption module includes at least one first zone and at least one second zone, wherein the first zone includes a first adsorbent.
71. The system of claim 70, wherein the first adsorbent comprises alkali-activated material and the catalyst comprises Cu-ZnO, a transition metal carbonyl complex, or a catalyst comprising a metal from a group of transition metals introduced into a zeolite cell.
72. The system of claim 70, further comprising a third zone that includes at least one desiccant.
73. The system of claim 69, wherein the catalyst is included in at least one of a first zone or a second zone.
74. The system of claim 71, wherein the alkali-activated material is selected from alumina impregnated with potassium carbonate, hydrotalcite activated with potassium carbonate, and mixtures thereof.
print version
Date of publication 09.02.2007гг
Comments
When commenting on, remember that the content and tone of your message can hurt the feelings of real people, show respect and tolerance to your interlocutors even if you do not share their opinion, your behavior in the conditions of freedom of expression and anonymity provided by the Internet, changes Not only virtual, but also the real world. All comments are hidden from the index, spam is controlled.