section Home
Production, Amateur Radio amateur Model aircraft, rocket- Useful, entertaining |
Stealth master
Electronics Physics Technologies invention |
space Mystery
Earth Mysteries Secrets of the Ocean Stealth section Map |
|
Use of material is permitted for reference (for websites - hyperlinks) |
Navigation: => |
Home / Products Patents / In the section of the catalog / back / |
INVENTION
Russian Federation Patent RU2070656
The method for forming fuel mixture into the combustion engine and DEVICE FOR ITS IMPLEMENTATION
Name of the inventor: Boyko MI .; DM Monosov
The name of the patentee: Boiko Mikhail
Address for correspondence:
Starting date of the patent: 1994.08.17
Use: in engine. The inventive fuel-air mixture in the internal combustion engine is preheated before start-up in the evaporator equipped with self-regulating heating elements and the inlet to the cylinders passes through the vortex chamber.
DESCRIPTION OF THE INVENTION
The invention relates to mechanical engineering, in particular to educational methods (cooking) fuel-air mixture in an internal combustion engine. This offer is of interest to form a homogeneous air-fuel mixture to reduce the toxicity of exhaust gases at all operating conditions, ensure a steady cold start while preserving engine performance.
It is known that ICE requires the use of the prepared combustible mixture, which is a working fluid, ideally consisting of hydrocarbons and air molecules in the gas phase at a desired ratio. The main problems to be solved with the charge mode: exact fuel dosing, appropriate air flow and the required ratio of mixture (excess air ratio) for the desired mode of operation of the engine; Fuel transfer (ideally) benzina- liquid to a gaseous state; mixing in a gas phase fuel and air at the molecular level. Currently, modern engines are mainly used sputtering method or carburation gasoline various mechanical or electro-injectors. However, these methods do not allow t to carry out a good homogenization and a complete evaporation can be no question at all engine operating conditions.
It is well known that heavy both in terms of environmental friendliness, and on the consumption of gasoline is its start-up and warm-up.
Low temperature cycle and the engine walls, weakened by power sparks, increased leakage from the cylinder, low compression pressure, a paltry rate of gas flow with reduced turbulence and swirl are not conducive to evaporation, and mixing the components. All this causes difficulties and start the engine warms up. Especially difficult conditions starting at low temperatures, when, in addition to a sharp weakening of fuel evaporation, large drag torque of the engine rotation. For this reason, start and warm-up mode (PP) Idling and small loadings (XX) complex, ineffective.
Various methods facilitate modes PP and XX. Deep (a ten, twenty-fold) pereobogaschenie mixture so that larger amounts of fuel (due to its own enthalpy) "pull out" of the gas flow has the lightest fraction in the gaseous state that "survive" the time to ignition and combustion. The lower the temperature of the engine and the environment, the greater the charge pereobraschenie necessary (eg, using the "leak" from the main power supply system of the carburettor). All of this together makes the engine start in the cold regions of difficult, fragile, requiring its fundamental reconstruction.
Currently, to improve the environmental performance of the exhaust gas of the internal combustion engine (ICE) in all operational modes are being developed in the following areas in creating devices that improve the homogenization of the fuel-air mixture:
- a device for creating turbulence within the carburettor diffuser;
- apparatus for creating turbulence in the inlet manifold;
- Device for pre-heating the fuel;
- Device for heating air or the entire air-fuel mixture;
- means for feeding fuel vapor in the working cylinders.
Widely known apparatus for homogenizing the fuel-air mixture in internal combustion engines, which is used for various electric heating homogenizing device mounted on the movement of the fuel-air mixture apparatus according to AS e.g. N 449168, representing the electric heating plate that is installed on the path of the fuel-air mixture, and a device for AS N 1702876 combustion engine system power supply, where evaporation of light fraction gasoline electric heating plate mounted in the carburetor pallet or device according AS N 1815399, which is a heating element and a heat sink mounted thereon.
Known and apparatus for preheating fuel various devices, such as AS N 1764522, 1784741, 1801176 or patent N 2002095.
Furthermore, well-known apparatus for preparing a homogeneous mixture by mixing air and fuel and to obtain the best homogeneity of the fuel-air mixture, homogenizing device elements are in the form of at least three helical blades on AS N 1831581, spanning the interior space of a large diffuser.
It should be noted that it is widely known mechanical (static) swirlers not only at the inlet, where the "tying" of homogeneity (homogenization), but already homogenized stream of fuel-air mixtures used for this purpose, for example, AS NN 1471704; 1519280; 1643767; 1719698; 1746027; 1774051; 1795141; 1812329, mounted at the output of the carburettor and inlet manifold on the inlet.
Furthermore, the tendency to use dynamic swirlers, where the blades, increasing turbulence and consequently homogenization, driven, for example, an electric motor (AS 1772391 N; N 1806284).
An advantage of homogenizing devices good mixing of fuel and air mixture, is that they allow operation of the internal combustion gasoline engines to glubokoobednennyh (up to a 1,3 or more) mixtures.
In order to supply fuel vapor in an internal combustion engine is used for operating the cylinders and devices. from. 1802196; Pat N 1838655 or 2002096.
Known and devices, such as a carburetor for an internal combustion engine on the AS N 1714181 in which the effectiveness for homogenization and vaporization processes fuel carburetor provided an electrical heating spiral swirler laid in the groove forming a heating surface for a large part of the expanding cone.
Known and devices that use more advanced and technological method of homogenization and partial evaporation of light gasoline fractions, based on the use of the vortex effect.
First of all, this vortex carburetor AP Merkulova (VC-1 and VC-2) that were not used because of their technical complexity. Using known vortex effect device and AS N 905 505; N 1017803, allowing not only to homogenize the fuel and air mixture, but also to produce a partial evaporation of light gasoline fractions.
Furthermore, the theoretical and experimental work YB Sviridov and his school have allowed a new approach to pofraktsionnomu evaporation of gasoline. Detected new physical yavlenie- "molecular boiling" ( "On the process" - a process Sviridov), explaining the process of mixing homogeneously at molecular level very quickly (less than 5 ms) to obtain a combustible mixture gas, called the author of "benzogaz".
It is known that the most intense heat and mass transfer is characteristic of the liquid film moving along the surface of the high thermal conductivity of the body, because in this case the most high surface heat transfer and mass transfer, and herself "working" weight, you want to warm up, small: the thinner the film, the more efficient the process of evaporation. The maximum rate of evaporation is observed at the boiling point, so for efficient vaporization (boiling) of complex fluids is necessary to organize the process of boiling (vaporization) to each component of the liquid to reach its boiling point. This can be achieved, or a gradual increase in temperature in time, or over (promotion) of the liquid film on the highly conducting body with increasing temperature, so that each component of the film, moving from "cold" to "hot" end of the high thermal conductivity of the body, can "find my temperature" and evaporate.
There is a method of education toplivnovozdushnoy mixture in an internal combustion engine on the AS 1784069 (taken as the prototype for the method) in which to obtain a homogeneous air-fuel mixture of air and fuel is passed through a tank partially filled with engine oil heated, the air and fuel enter the engine oil through a duct in which is placed a fuel jet. The liquid fuel entering the engine oil is dissolved in it, and the flow of air in the form of bubbles passing through the mixture saturated with fuel vapor and activates evaporation of the fuel, whereby a homogeneous air-fuel mixture, the use of which, according to the authors, will reduce the toxicity of the exhaust gases, to improve knock resistance mixture and engine efficiency, reduce fuel consumption.
Despite the attractiveness of the method has the following disadvantages:
depending on engine operation in the oil will dissolve different amounts of fuel and, therefore, will change the viscosity and specific gravity of the mixture that will strongly influence the processes of heat and mass transfer of air passing through the oil modes;
dissolution processes gasoline and oil extraction have an incomparably large time constants than the dynamics of the internal combustion engine, which would lead to a violation of the stoichiometry of the fuel-air mixture during transient engine operating conditions and to the impossibility of precise control over the degree of enrichment of the mixture supplied to the engine cylinders;
multifractional gasoline is liquid and has a different temperature distillation (evaporation) fractions, which leads to impossibility of simultaneous extraction of 100% gasoline over a time interval (dissolved during the previous cycle);
Modern gasolines to increase resistance antiknock contain a number of additives, and sparingly tyazheloletuchih (e.g. tetraetilsvinets- TES) to be accumulated in the oil, by extracting not. These additives are a group of potent poisons, and require oil changes to avoid the maximum permissible concentration (MPC) of these poisons in oil;
when the internal combustion engine air flow rate range is 1 to 10, which will significantly change the extraction fluid dynamics and process influence the composition of the mixture, and the possible modes for the forced partial oil ash, which will affect the toxicity of exhaust gases;
presence of a water inlet valve of the fuel-air channel creates additional resistance to the internal combustion engine at its input, which results in deterioration of the filling of the cylinder and, therefore, to deterioration of cardinality and load characteristics of the engine over the entire dynamic range of its operation;
to ensure the normal operation of the motor oil bath should have a significant amount that stretches the starting time of the engine, because for the vaporized fuel is necessary to warm up the oil bath to the desired temperature;
Experiments carried out by the method of forming the fuel-air mixture in an internal combustion engine [14] in a bank with an oil-gasoline mixture and its ignition,, unconvincing and do not suggest that this method may be implemented for automotive gasoline engine.
Based on the analysis of different ways of mixing for gasoline internal combustion engine and the system requirements of his power, taking into account the environmental standards in waste gases and economical method and apparatus of mixing fuel and air mixture in an internal combustion engine must provide:
- complete gasification or at least fuel evaporation;
- exact dosing of fuel and air at all operating conditions;
- homogenization of fuel and air at the molecular level;
- the smallest flow resistance;
- processability in the manufacture and repair.
A device on the AS 1812328, the unit of the combustion engine power (taken as the prototype for the device), which is provided with vortex mixing chamber disposed within the inlet. The side wall of the chamber arranged windows that are opened slide valve flap with an equal number of windows having a tangential cross-sectional shape, and in the bottom chamber is formed with a central funnel-shaped channel section coaxially nozzle dispensing mouth. The windows are arranged in a circle with a variable pitch. Opens transitional edges chamber windows have the shape of a parabola. The mouth of the nozzle is located inside the funnel-shaped channel with a gap, providing air flow required for stable operation of the engine at idle.
However, all the positive properties of this device does not allow the complete evaporation of the fuel, as the air has a low heat capacity, has a poor heat and mass transfer with the liquid fuel droplets and, in addition, the fuel and air in the vortex chamber have a small residence time prior to entering the cylinders.
The object of the proposed method and apparatus of the formation of fuel-air mixture in an internal combustion engine is to reduce the toxicity of exhaust gases around the dynamic operation of the engine, fuel consumption, improvement in dynamic properties, reduction of unproductive fuel losses by reducing transients in the conversion of fuel into vapor (gas) homogenization of the fuel-air mixture in the entire dynamic range of the engine, since start-up, warm-up, idling, to the forced modes through an organization pofraktsionnogo film evaporation of gasoline, in which at the beginning of produced fuel film thickness of no more than 80 100 microns, dispersed parietal swirl on the walls of the evaporator and moves towards a uniformly increasing the temperature field in which all fuel fractions "are its temperature" and evaporate from the film.
The solution toxicity and efficiency of cold start and run an automobile engine is extremely important. Modern car engines are equipped with fuel injection systems, three-way catalytic converters, lambda probe, a microcomputer, etc., have achieved good results in toxicity, but not at the expense of efficient combustion in the engine, and by correcting the violations. However, these modern fabulously expensive methods suitable for the operating modes do not work at start-up, warm-up and idle speeds. Experiments show that when tested gasoline internal combustion engine cars on the urban cycle (test vehicle on the rollers during a change of operating modes of the engine: idling, acceleration, load different, reel, etc.) 1st cycle (four) throws 90 % CO and CH 2/3.
Two engine operating phase start-up mode, warm-up and idling (PPHH) and load modes nominating different requirements for preparation of the fuel-air mixture is necessary to distinguish clearly: maximum requirements modes PPHH and lighter requirements for load conditions, when the high pressure cycle temperature and the walls of the gas flow velocity, turbulence intensity, satisfactory cleaning from residual gas cylinders, etc. contributing to a better mixture formation and combustion and consequently the norms of toxicity of exhaust gases is usually performed.
The essence of the claimed method of forming the fuel-air mixture in an internal combustion engine, including heating fuel, its evaporation and mixing with air is to preheat the evaporator by forming it along the path of fuel following the smoothly rising temperature field, the corresponding temperatures pofraktsionnoy distillation of fuel, and support its temperature conditions constant, is formed of a suction air speed vortex deposited fuel on the inner surface of the evaporator to form a fuel film which moves cocurrent flow swirl in the region of higher temperatures, pofraktsionno vaporized fuel, while mixing the fuel vapor with the vortex air and is fed to cylinders.
The essence of the claimed device to form a fuel-air mixture in an internal combustion engine is that it comprises a hollow cylindrical body with a top lid, internal holes formed on the side surface of the body with front and rear edges, and an outlet, a hollow cylindrical spool valve with tangential regulating channels formed on a cylindrical surface mounted coaxially on the housing, the hollow cylindrical body, the cap and the cylindrical spool valve to form a vortex chamber nozzle, characterized in that the upper cover is provided with an evaporator comprising the air inlet channel in the form of snail at the input end of which is installed throttle valve, and the downstream end of the cochlea tangentially communicated with the cylindrical portion of the flow channel of the evaporator, representing and an evaporation chamber that was transmitted (reported) confuser portion with a tapered outlet portion of the flow channel of the evaporator connected to the chamber swirls, and the outer wall (body) of the evaporator installed self-regulating heating elements are disposed so as to form an optimal temperature field on the inner wall of the flow channel in its cylindrical and confusor areas and nozzle mounted tangentially so causes fuel stain on the cylindrical part, in addition, a vortex chamber and snail equipped with supersonic nozzles Lovaglio for vortex in PPHH mode.
This design formation unit fuel-air mixture in an internal combustion engine (ICE) afforded pereobogaschenie both fuel and air mixture is equal to 0.5 0.6 (for PP mode), as a homogeneous mixture, and a lean (1.1 1.5) during the entire dynamic engine operation.
The claimed method of forming toplivnovozdushnoy mixture in an internal combustion engine is performing well. Previously, before starting the engine, warm up the inner wall of the evaporator, forming on it on the way fuel film planonarastayuschee temperature field. And beginning sforomitrovannogo field form with a temperature clearly lower temperature sublimation of volatile fractions, for example 40 o C for gasoline and end point field, certainly more sublimation temperature of the heaviest fractions, such as 250 o C for gasoline. Maintain constant stable temperature field mode. Carry out commissioning. Is formed from the intake air speed vortex tangentially cause fuel to the internal surface of the evaporator to form a fuel film which moves cocurrent flow swirl of the low to the higher temperatures pofraktsionno evaporate it, while mixing the fuel vapor with the vortex air and is fed into the cylinders .
![]() |
На фиг.1 представлено устройство для образования топливно-воздушной смеси в двигателе внутреннего сгорания (ДВС), где: |
FIG. 1 устройство для приготовления топливно-воздушной смеси для двигателя внутреннего сгорания (ДВС) содержит корпус вихревой камеры 1 с внутренними отверстиями 2, цилиндрическую золотниковую заслонку 3 с тангенциальными регулирующими каналами 4, верхняя часть корпуса 1 снабжена крышкой 5, а нижняя- выходным отверстием 6. Золотниковая заслонка 3 вокруг своей оси поворачивается поворотным рычагом 7. Стенки корпуса 1, золотниковая заслонка 3 и крышка 5 образуют вихревую камеру 8. На верхней крышке 5 установлен корпус испарителя 9, верхняя часть которого соединена с улиткой 10, во входном воздушном канале 11 которой установлена дроссельная заслонка 12. Входной воздушный канал 11 тангенциально сообщается с проходным каналом 13, имеющим цилиндрический 14, конический 15 и выходной 16 участки, образуя испарительную камеру. Выходной участок 16 проходного канала 13 (сопло) соединен с вихревой камерой 8. В цилиндрической части проходного канала 13 установлена топливная форсунка 17. Как вихревая камера 8, так и улитка 10 снабжены сверхзвуковыми соплами Ловаля 18 и 19 соответственно. На наружной стенке корпуса испарителя 9 установлены саморегулирующиеся электронагревательные элементы 20, причем элементы 20 расположены по нисходящей кривой так, что на внутренней стенке проходного канала 13 создается равномерное поле температур.
The device operates as follows:
При пуске двигателя закрыты как дроссельная, так и золотниковые заслонки, и воздух в испарительную камеру (проходной канал 13) и в вихревую камеру 8 поступает через сверхзвуковые сопла Ловаля 18 и 19 соответственно. Сечения сопел подобраны таким образом, что обеспечивают нормальное завязывание вихревых потоков как в вихревой, так и в испарительной камерах. Перед пуском двигателя включают саморегулирующиеся электронагревательные элементы 20 и прогревают внутреннюю стенку испарителя до требуемых температур, включение электронагревательных устройств осуществляется вместе с включением зажигания.
С первым принудительным поворотом коленчатого вала двигателя от стартера в цилиндре двигателя, а, следовательно, и во входном коллекторе создается разрежение. При закрытых дроссельной и золотниковой заслонках воздух, поступающий в вихревую и испарительные камеры, образовывает вихревые потоки. Со второго-третьего такта на "холодный край" испарителя в виде пятна наносится топливо, которое вихревым потоком преобразовывается (размазывается до состояния пленки) и, увлекаемое спутным потоком воздушного вихря, перемещается к "горячему краю", проходя все точки пофракционной его разгонки (для многофракционного топлива), путем микропленочного пристеночного испарения топлива, прогреваемого высокотеплопроводной стенкой испарителя, образуя гомогенную горючую (паровоздушную) газовую смесь, которая затем поступает в вихревую камеру. В вихревой камере под действием большого разрежения в ядре вихря при сравнительно небольших перепадах давления, высокой турбулентности ядра, зон пониженной и повышенной температуры в вихре, а и под действием интенсивных звуковых и ультразвуковых колебаний и ионизации происходит гомогенизация топливовоздушной смеси. По мере увеличения оборотов открывается сначала дроссельная заслонка, а затем и золотниковая заслонка. Манипулируя дроссельной и золотниковой заслонками и интенсивностью подачи топлива форсункой, добиваются требуемого режима работы двигателя.
Необходимо отметить, что при таком способе подготовки топливно-воздушной смеси в режиме пуска имеется возможность подавать в цилиндр обогащенную смесь (0,6 0,7) в гомогенизированном виде, в дальнейшем при "схватывании" и прогреве смесь резко обедняют до 1,2 1,3.
При таком способе подготовки топливно-воздушной смеси двигатель работает устойчиво на всех режимах при обедненной смеси 1,1 1,3, за исключением первых циклов пуска двигателя 0,6 0,8 и фoрсированного набора скорости 0,9 1,0.
Таким образом, предлагаемое конструктивное решение по способу подготовки топливно-воздушной смеси позволяет значительно улучшить экологические показатели ДВС без применения дорогостоящих нейтрализаторов.
USED BOOKS
1. AS N 449168, кл. F 02 M 27/08.
2. AS N 905505, кл. F 02 M 17/00.
3. А.с. N 1017803, кл. F 02 M 17/00.
4. А.с. N 1471704, кл. F 02 M 17/00.
А.с. N 1519280, кл. F 02 M 31/00.
6. А.с. N 1543767, кл. F 02 M 17/00.
7. А.с. N 1702876, кл. F 02 M 31/12.
8. А.с. N 1714181, кл. F 02 19/08; 29/00.
9. А.с. N 719698, кл. F 02 M 17/00.
10. А.с. N 1746027, кл. F 02 M 29/06.
11. А.с. N 1764522, кл. F 02 M 31/16.
12. А.с. N 1772391, кл. F 02 M 29/02.
13. А.с. N 1774051, кл. F 02 M 29/00.
14. А.с. N 1784069, кл. F 02 M 29/00, 1992 (прототип для способа).
15. А.с. N 1784741, кл. F 02 M 27/04; 31/00.
16. А.с. N 1705141, кл. F 02 M 29/06.
17. А.с. N 1801176, кл. F 02 M 31/00.
18. А.с. N 1802196, кл. F 02 M 17/00; 27/04; 29/04; 23/00.
19. А.с. N 1806284, кл. F 02 M 17/17.
20. А.с. N 1812328, кл. F 02 M 9/00, 1993 (прототип для устройства).
21. А.с. N 1812329, кл. F 02 M 19/08.
22. А.с. N 1815399, кл. F 02 M 31/12.
23. Патент N 2.002.095, кл. F 02 M 31/02.
24. Патент N 2.002.096, кл. F 02 M 31/087.
25. Меркулов А.П. Вихревой эффект и его применение в технике. М. Машиностроение, 1969.
26. Свиридов Ю.Б. Дроздовская Л.Ю. Новый способ высокоэффективного топливоотвода к текущим жидким пленкам многофракционного состава (моторным топливам)// Двигателестроение, 1987, 10(106), с. 3 7.
CLAIM
1. Способ образования топливовоздушной смеси в двигателе внутреннего сгорания, включающий подогрев топлива, его испарение и перемешивание с воздухом, отличающийся тем, что предварительно перед пуском двигателя прогревают испаритель, формируя на нем по пути следования топливной пленки плавно нарастающее поле температур, соответствующее температурам пофракционной разгонки топлива, и поддерживают его температурный режим постоянным, формируя из всасываемого воздуха высокоскоростной вихрь, наносят топливо на внутреннюю поверхность испарителя, формируя топливную пленку, которую перемещают спутным потоком воздушного вихря в область более высоких температур, пофракционно испаряют ее (его), одновременно перемешивая пары топлива с воздухом вихря, и подают в цилиндры.
2. Устройство для образования топливовоздушной смеси в двигателе внутреннего сгорания, содержащее полый цилиндрический корпус с верхней крышкой, внутренними отверстиями, выполненными на боковой поверхности корпуса с передними и задними кромками и выходным отверстием, полую цилиндрическую заслонку с тангенциальными регулирующими каналами, выполненными на цилиндрической поверхности, установленную коаксиально на корпусе, образуя с корпусом вихревую камеру, причем входные и выходные отверстия выполнены с возможностью образования проточных каналов переменного проходного сечения, форсунку, отличающееся тем, что оно содержит испаритель, снабженный входным воздушным каналом, дроссельной заслонкой и саморегулирующимися нагревательными элементами, причем испаритель установлен соосно с корпусом, входной воздушный канал на входе имеет дроссельную заслонку, а его выход тангенциально сообщается с цилиндрической частью проходного канала испарителя, представляющей собой испарительную камеру, сообщенную конфузорным участком с суженным выходным участком проходного канала испарителя, соединенным с вихревой камерой, саморегулирующиеся нагревательные элементы установлены на наружной поверхности испарителя и расположены по нисходящей кривой, форсунка установлена в цилиндрической части испарителя тангенциально, входной воздушный канал выполнен в виде улитки, вихревая камера и улитка снабжены сверхзвуковыми соплами Ловаля.
print version
Publication date 07.04.2007gg
Comments
Commenting, keep in mind that the content and the tone of your messages can hurt the feelings of real people, show respect and tolerance to his interlocutors, even if you do not share their opinion, your behavior in terms of freedom of speech and anonymity offered by the Internet, is changing not only virtual, but real world. All comments are hidden from the index, spam control.