Start of section
Production, amateur Radio amateurs Aircraft model, rocket-model Useful, entertaining |
Stealth Master
Electronics Physics Technologies Inventions |
Secrets of the cosmos
Secrets of the Earth Secrets of the Ocean Tricks Map of section |
|
Use of the site materials is allowed subject to the link (for websites - hyperlinks) |
Navigation: => |
Home / Physics / Discoveries / |
PHENOMENON OF TRANSMISSION OF ENERGY OF INDUCTIVITY THROUGH MAGNETIC MOMENTS OF SUBSTANCE,
Located in the surrounding space, and its application
Leave a comment
The phenomenon of the transfer of energy inductances through the magnetic moments of a substance in the surrounding space, and its application. - Moscow: Metasintez, 2003 - 20 p.ISBN 5-901569-05-9
The publication first reported the discovery of a new physical phenomenon - the transfer of energy through the magnetic moments of the atoms of matter . The original history of the discovery and its possible applications. An assessment of the prospects for the technical use of this phenomenon is given. In the appendices, descriptions of experiments are given that have made it possible to describe phenomena, study its properties , and give them an explanation.
In sports orienteering the participants' vision is occupied by comparing the map with the terrain, therefore it takes unnecessary time to use the usual compass. In 1987, I decided to design a compass that allows you to determine the sides of the world, using not vision but hearing.
I imagined that this should be an audio frequency generator that changes the tone according to its location relative to the Earth's magnetic field. As an audio frequency generator, a blocking oscillator was used, assembled according to the classical scheme, but with a feedback loop, where amorphous iron was used as the inductor core, which changes its magnetic permeability at magnetic field strengths commensurate with the Earth's magnetic field.
The sound compass worked with the orientation change, as it was intended. The pulse repetition frequency changed five times as the orientation was changed.
Analysis of the properties of the obtained scheme revealed many inconsistencies in its work with generally accepted concepts. It turned out that the signals on the electrodes of the transistor, measured on the oscilloscope relative to both the positive and negative poles of the power source, had the same polarity (the npn transistors had a positive polarity of the signal at the collector, pnp was negative). The inductance in the collector circuit had a resistance close to zero. The generator continued to work when approaching the core of a strong permanent magnet, which saturates the core, and the blocking process would have to stop due to a lack of transformation in the feedback loop. There was no hysteresis in the core in any way, I was not able to reveal it by the Lissajous figures. The amplitude of the signal at the collector turned out to be five or more times higher than the voltage of the power source. When the offset in the base changes, the continuous generation process is converted into intermittent, in the form of bursts of pulses. In 1988, I discovered that the signals I took as a blocking process are short needle-like pulses of tens of nanoseconds. I doubted the presence of mutual inductance between the base and the collector inductances, and I could no longer call such a scheme a blocking oscillator. |
![]() Figure 1. Design and layout of the compass |
Continuing to study the properties of the obtained scheme and those close to it, in 1990 I discovered that it works without a core. It turned out that such a generator can be made both on known and "improbable" circuits with one or more inductances connected to any electrodes of the transistor, with mutual feedback being provided both positive and negative. The generator works without feedback. The collector with the emitter can be swapped, generation does not stop, only the waveforms change. Generator frequencies can range from fractions of hertz to hundreds of kilohertz. These results can be achieved by choosing the number of turns in the inductances.
In 1991 it became clear that the generator could be assembled on any transistors and any power - bipolar, field with an isolated and conducting gate, and on a radio lamp. In 1996, I called this generator Kacher (the oscillator of reactivity).
In 1992, I found that when the coil connected to the input of the oscilloscope was monitored and the signal from the driver was observed in it, when its position relative to the driver was changed within the desktop, the amplitude of the signal slightly changed. The coil can be of arbitrary shape and size. The smaller the coil turns, the less vibrational processes occur in it when it interacts with the input capacitance of the oscilloscope.
Figure 2 Design, layout and output parameters of the caterpillar (Brovina Sensor) |
Further in the text I call the inductor - the inductance connected to the power source and included in the structure of the driver , the receiver - the inductor with a detector and a smoothing capacitance, not galvanically connected to the driver . If a voltmeter is connected to the receiver with a working inductor, then a considerable voltage, in tens of volts, is observed at distances from millimeters to centimeters from the inductor, linearly falling from the distance. This gave me the reason to use the coach as a sensor, converting non-electrical value (meters, degrees) into volts without intermediate transformations. This device I patented in 1993 in Russia as the "Brovin Sensor" for measuring angular and linear movements. Due to its dissimilarity in the world-known devices with similar functions, the invention is given the name of the author. In 1994, I myself made and sold one of the most technological variants of the cashier in Moscow on the Mitinsky market, which was notified by television in the program " White Crow " on 04.10.94. This scheme came in the literature without my knowledge. Strange properties in the driver are abound, and yet the strangest thing is the transfer of energy, contrary to the laws of Ampere and Bio- Savar, expressed in the fact that the voltage in the receiver, arising from the work of the inductor, decreases linearly depending on the distance between the inductor and the receiver, and It is not inversely proportional, as should be the law of Ampere. |
I assumed that the energy is transferred through the magnetic moments of the atoms of the substance surrounding the inductor. Such a conclusion was made possible by observations.
Observation of various phenomena shows that in some frequency ranges of alternating current, the interaction between inductances occurs contrary to the fundamental laws of physics.
It is thus established that at medium frequencies of sinusoidal currents of hundreds of kilohertz, the interaction between inductances that do not contain ferromagnetic materials is weak, which corresponds to fundamental laws.
The interaction is amplified (this is expressed by increasing the output voltage on the receiving inductor), if the sinusoidal signal is converted into a signal of a rectangular shape. In this case, the signal spectrum acquires a higher-frequency component on the leading and trailing edges, and if this signal is loaded with inductance, then on the signal fronts, bursts of voltage are generated, caused by extraneous self-inductance.
This indicates that the amplification of the interaction of inductors results from the transfer of part of the energy through the magnetic moments of the surrounding inductance of the substance, since the physical explanation of the self-induction excess is based on the mechanical action of the magnetic field on the magnetic moments of the atoms surrounding the source of the magnetic field of the substance.
In microwave ovens, from the outside, through the screen, there is a weak radiation with the help of a coil with a detector. Despite the kilowatt power of the inductor - magnetron. In this case, the frequency of the alternating current is higher than the resonance frequency of the nuclear magnetic moments of the surrounding matter and the energy is not transmitted through the magnetic moments of the substance, and the radiation energy is approximately the same as in the shaving (milliwatt power) with the receiver wrapped in a metal screen ( experiment 3 ) .
In NMR (nuclear magnetic resonance) tomographs used in medicine, the absorption of the energy of the electromagnetic field by a substance located in the area of the inductor frame is observed and measured in the frequency range 106-107, 109-1010 Hz and the composition of the substance is judged from the values of the absorbed frequencies. In this case, there is a phenomenon of energy transfer similar to what happens to the driver .
In a pair of driver -inductor and receiver ( Fig. 2 ), the LED connected to the receiver glows at a distance of 3 - 5 cm from the inductor. The receiver generates a constant current of up to 0.2 A , with the current decreasing linearly with increasing distance between the inductor and the receiver.
In a pair consisting of a sinusoidal generator and a receiver with a resonance at frequencies of about 90 MHz , it is also possible to obtain a luminescence of a light-emitting diode from a parallel circuit - a two-turn coil from a thick wire-capacitance effect due to the skin effect, at a distance of centimeters from a high-frequency current source. The LED glows only at the resonant frequency. I assume that here also the interaction of the inductor and receiving inductances takes place not through the electromagnetic field, but through the magnetic moments of the substance surrounding the inductance.
The glow of the light-emitting diode and from the motor can be obtained from a two-turn coil from a wire with a diameter of 0.05 mm , and no signs of resonance are observed.
It is known that a neon lamp glows in a high frequency field, it is believed that its discharged gas ionizes from collisions. This means that the molecules of matter can not only absorb energy from an electromagnetic source without contact, but also release energy in the form of photons into the surrounding space, something like this happens in the case of a crochet surrounding substance and receiver.
It is known that in demonstration experiments iron filings concentrating around the poles of a magnet look like hair, depicting concentric magnetic-force lines. The density of these lines at the poles of the magnet is higher than at the periphery. The inhomogeneity of the resulting image can mean that the intensity of the magnetic field along the magnetic field line is higher than away from it. This observation can be useful for further reasoning.
I could not understand the physics of the caterpillar for a long time, and only studied its properties . I found that the LED connected to the receiver is at a considerable distance: 3 - 5 cm or more from the inductor. This contradicts the laws of Ampere and Bio- Savar, since the value of mutual induction between the inductor and the receiver in the absence of ferromaterials between them, measured in volts and amperes at the receiver, decreases not inversely as the square of the distance, as is the case for a point source. Measured in the receiver current or voltage, vary directly in proportion to the distance between the inductor and the receiver, and the proportionality factor is also less than one.
The magnetic permeabilities of air and vacuum differ by a few percent. I had a question, how can energy be transferred? Katscher worked as a DC transformer with a relatively high efficiency, the pulses at the output were smoothed down to a constant current.
A new look at the phenomenon appeared when I realized that it is necessary to take into account the extraneous currents of self-induction. An extrac- tion is the same absorption of energy that is observed in nuclear magnetic resonance. When the direct current is turned on, the excess is observed only in the transient process.
The properties of the semiconductor are similar to the properties of the inductance. At the time of applying the voltage, there is still no current, but carrier generation occurs, delay, - problems of the leading edge. The voltage is removed, the carriers dissipate, the semiconductor works as a source of EMF, - problems of the trailing edge. The processes are subtle, but, nevertheless, take place within nanosecond limits. When the semiconductor and the small inductance are connected in series into the circuit, they are summed.
The analysis of these phenomena with the help of a stroboscopic oscilloscope did not give new results. Kacher , assembled on a powerful transistor, with a large inductance, with many turns, did not give a proportional increase in the power of the transformation at the receiver. Everything remained within the same limits as on low-power and low-power transistors. It seemed that the impulse in a dozen nanoseconds is broken up into even smaller parts than those seen by the usual oscilloscope C1 . It turned out that this was not so, but in some regimes this was the case.
Having understood in 1998 in the physics of the work of the driver , I found that the short-circuit current (main), which lasts a unit of nanoseconds, is accompanied by a slow current in microseconds (the period of charge accumulation). And, accordingly, there is a slow (microseconds in the duty cycle) direct and two fast (nanosecond in pulse), direct and reverse extrusions of self-induction. Those. The circuit with a specified periodicity slowly accumulates a space charge in the base region slowly in microseconds, and then discharges it in nanoseconds into a low-impedance inductor circuit.
Kacher induces a " nod " within a few nanoseconds (so briefly I call the mechanical movement of the magnetic moments of the atoms of a substance, caused by the action of magnetic fields in paramagnets, and the precession caused in diamagnets) of the magnetic moments of atoms that make up the space surrounding the inductor along the magnetic lines of force formed Inducer. Magnetic moments nod not at once, but for a certain period of time, like falling dominoes, from denser packing in the volume near the inductor, to a friable away from it.
The emf induced in the receiver by the streaming of the nod of the magnetic moments of the atoms of the surrounding medium depends on the factor \ of the magnetic flux derivative with respect to time, which tends to infinity, since it is a function close to unity. Nanosecond pulses create microwave radiation, and therefore the effect is directly proportional to the energy transfer distance at lower frequencies and longer pulse durations.
I assume that near the inductor there should be a maximum concentration of nods excited by the inductor. The nods are transferred to the periphery by chains bound by the magnetic field, and absorb energy from the inductor during nanoseconds, thereby causing self-inductance extrusions. Along the axis of the chain, composed of the magnetic moments of the atoms moving away from the inductor to the periphery, the intensity of the magnetic field is greater than in other directions (in my view, the magnetic moment of the atom is the logical sum of the constituent atoms of magnetons-quantum constants). The plane of the receiver frame that intersects a number of chains (magnetic flux) as it approaches the inductor captures a larger number of strings, with a smaller number of strings removed. This determines the directly proportional dependence of energy transfer from the inductor to the receiver, which is confirmed by experiment.
The phenomenon described above is a new, sixth way of conveying information, in addition to sound, light, electric circuit, electromagnetic waves, pneumatics.
This is a method for converting the technology for electronics from the two coordinate current state of the arrangement of the elements to three coordinate, since the transfer of information can be carried out without galvanic coupling through the Z coordinate and the remaining axes, as now, but without galvanic coupling.
This is a way of converting non-electrical quantities into electrical ones.
This is a way of transmitting information through media previously insurmountable: liquids, metals, dielectrics.
A new phenomenon opens up prospects in the knowledge of the properties of matter. For example, it may be possible to analyze the composition of a substance by simple methods.
Similar properties should be discovered in electric fields.
The effect allows creating simple and cheap means of automation and robotization, and this will make any manual labor ineffective.
There will be new ways of audio / video recording.
This is the way to make wired telephone systems as wireless as fiber optic. The inductance of the wire, blocking now the transmission of information, will become an active information-carrying material, because The drawer can also perform a short-term rupture of the inductor circuit.
The author created a tool - a learning tool - with the help of which the phenomenon is realized in all cases.
The conductor, which is an inductance with a current that lasts from tens or less nanoseconds, creates in the surrounding space a magnetization manifested in the mechanical change in the position of the magnetic moments of the atoms surrounding the active and receiving inductance of matter, and this allows the transfer of energy from the active inductance to the receiver not only through the actual magnetic field Active inductance, but also on the changing mechanical displacement of the magnetic moments of the surrounding inductance of the substance. As a result, the change in energy in the receiving inductance as a function of distance occurs according to the law U = U0 (1 - kX)
Experiment 1
The purpose of the experiment is to determine whether the magnetic moments of the air surrounding the inductor and the receiver are elements carrying energy from the inductor to the receiver. It is assumed that the absence of a reaction with a change in the air pressure will indicate the transfer of energy only due to the induction of the magnetic field between the conductors. The presence of the reaction will confirm the hypothesis of energy transfer by the magnetic moments of the air.
Катушки индуктора и приемника ( Рис. 2 ), располагаются соосно, и закрепляются в герметично закрываемой стеклянной банке. Активные элементы: транзистор и диод помещаются вне банки для исключения микрофонного эффекта. Конструкция крепления качера предусматривает исключение влияния деформации, которая может изменить взаиморасположение индуктора и приемника. Поскольку внутри банки находятся только катушки, полупроводники находятся снаружи, температурные скачки при изменении давления на выходные параметры не влияют. Сигнал с приемника наблюдается на емкостном входе осциллографа.
Вдуваем и отсасываем воздух из банки. На осциллографе наблюдаются соответствующие возрастанию и уменьшению давления всплески выходного напряжения.
Вывод: Изменение количества носителей магнитных моментов при увеличении и уменьшении давления воздуха изменяет потокосцепление, наблюдаемое на осциллографе.
Это способ измерения, например, артериального давления безинерционный и безгистерезисный.
Эксперимент 2
Считается, что в жидкостях и твердых телах электромагнитные волны не распространяются. Воздух - смесь азота и кислорода - парамагнетики, а вода является диамагнетиком ( И.М. Дубровский и др. Справочник по физике 1986 г. Таблица 84 ). Эксперимент сравнит взаимодействие между индуктором и приемником в воде и в воздухе.
Индуктор и приемник ( Рис. 2 ) покрываются полиэтиленовым компаундом для надежной гидроизоляции и жестко закрепляются на конструкции соосно на расстоянии 20 мм . В приемнике измеряется ток цифровым амперметром Щ4313 , выходная цепь приемника шунтирована резистором 43 кОм и емкостью 1 мкФ , а ток (обеспечивает низкое входное сопротивление измерителя) измеряется параллельно этой цепи для исключения паразитных шумов и наводок. Конструкция из жестко скрепленных между собой индуктора и приемника попеременно погружается из воздуха в воду, и в обоих случаях проводятся замеры выходного напряжения на приемнике. Питание индуктора U = 2В от стабилизированного источника.
На выходе наблюдается показание в воздухе 0.430 мА в среднем, и в воде 0.436 мА . При измерении напряжения на тех же условиях наблюдается в воздухе и воде одинаковое показание 0.910 В .
Вывод: воздух - смесь парамагнетиков азота и кислорода - создает одинаковое потокосцепление, как и вода - диамагнетик, но энергия на выходе примерно одинаковая, что подтверждает гипотезу о переносе энергии кивками магнитных моментов окружающего качер вещества.
Это способ анализа состава жидкостей.
Эксперимент 3
Известно, что в металлах, находящихся вблизи проводников с переменными токами, возникают индуцированные вихревые токи, препятствующие возникновению токов, их вызывающих. На этом свойстве основано экранирование источников переменных токов металлами. Если от магнитного поля, созданного качером , нельзя экранировать приемник, то можно предположить, что потокосцепление переносится кивками вещества, составляющего экран.
Катушка приемника ( Рис. 2 ) полностью заворачивается со всех сторон пищевой алюминиевой (парамагнетик) фольгой (можно заворачивать и индуктор, но при этом искажаются его колебания).
При нулевой дистанции между индуктором и приемником через 10 слоев фольги в приемнике напряжение обнаруживается вольтметром, через 8 слоев амперметром (нагрузки те же, что и в Эксперименте 2 ). Через два слоя фольги выходной сигнал на амперметре 0.4 мА и уменьшается с дистанцией, т.е. как через слой воды в 2 см .
Если индуктор расположен в центре с одной стороны, а приемник в центре но с другой, то через фольгированный с двух сторон медью текстолит (диамагнетик) толщиной 0.5 мм , размерами 20 х 15 см обнаруживается сигнал вольтметром в милливольтовом пределе.
Вывод: несмотря на полное экранирование (несколько слоев), исключающее диффракцию, энергия от индуктора передается через магнитные моменты вещества алюминия и меди.
Эксперимент 4
Известно, что ферромагнитные сердечники, увеличивая магнитную проницаемость пространства между индуктором и приемником, существенно увеличивают энергию трансформации. По сути, в этом случае происходит перенос энергии через вещество ферромагнетика, и в процессе участвуют магнитные домены. А если рядом, вне катушек, установить лист металла не ферромагнетика, то в нем должны образоваться вихревые токи, которые должны препятствовать возникновению токов индуктора и уменьшать их.
Индуктор и приемник ( Рис. 2 ) устанавливаются соосно и закрепляются полиэтиленовыми стойками на расстоянии 4 см . На приемнике наблюдается сигнал 85 мкА . При приближении к этой конструкции с одного бока алюминиевой фольги сигнал увеличивается до 250 мкА , а при приближении медной фольги до 140 мкА .
Вывод: в первичном состоянии энергия передается приемнику через магнитные моменты атомов азота и кислорода, приближение металлов с разнознаковой магнитной проницаемостью приводит к одинаковым результатам, а именно, повышению энергии на выходе, что противоречит изначальному предположению о снижении энергии выхода. Это означает, что в переносе энергии участвуют магнитные моменты вещества меди и алюминия.
Эксперимент 5
Если уменьшить вакуумным насосом количество носителей кивков, то ожидается уменьшение выходного сигнала.
Испытание проводилось в вакуумной камере опытного завода МЭИ и показало следующие результаты.
Индуктор и приемник ( Рис 2 ) соединены жесткими полиэтиленовыми стяжками с двух сторон на расстоянии 2 см , Uп = 2В .
Вся конструкция соединена одножильными проводами с разъемом вакуумной камеры и погружена в стеклянный стакан. Выходное напряжение измерялось цифровым вольтметром. Давление контролировалось электронным паскалеметром. Откачка производилась в течение двух часов, и замеры проводились каждые 10 минут . За это время наблюдалось изменение выходного сигнала от 1.034В до 1.000 В . За это время произошло изменение давления с от 100 до 10 Па . При таком изменении давления число молекул азота в объеме уменьшается с 23 до 19 порядка. После открытия камеры наблюдался возврат выходного сигнала до 1.026 В
Вывод: уменьшение количества носителей магнитных моментов уменьшает выходное напряжение.
Эксперимент 6
В итоговую формулу закона не входят размеры катушек индуктора и приемника.
Чтобы убедиться, верен ли закон при различных размерах катушек, изготавливаются катушки приемников в 3 и 10 раз больше размеров индуктора.
Наблюдается линейное изменение выходного сигнала при соосном удалении индуктора и приемника. Нелинейности наблюдаются только при сдвиге.
При приближении индуктора к проводам увеличенной приемной катушки напряжение выхода с приемника резко увеличивается, и почти скачком уменьшается до нуля, если провода катушки приемника пересекают катушку индуктора по осевой линии.
Вывод: закон изменения выходного напряжения при передаче энергии через магнитные моменты атомов не зависит от размеров катушек индуктивностей.
LITERATURE
Явление передачи энергии индуктивностей через магнитные моменты вещества, находящегося в окружающем пространстве, и его применение. - М.: МетаСинтез, 2003 - 20 с.ISBN 5-901569-05-9
print version
Автор: Бровин Владимир Ильич
Контактный телефон 201 52- 78
PS The material is protected.
Дата публикации 06.10.2006гг
Comments
Commenting on, remember that the content and tone of your message can hurt the feelings of real people, show respect and tolerance to your interlocutors even if you do not share their opinion, your behavior in the conditions of freedom of expression and anonymity provided by the Internet, changes Not only virtual, but also the real world. All comments are hidden from the index, spam is controlled.