Navigation: =>

Home / Patent catalog / Catalog section / Back /

CHEMICAL SOURCES OF CURRENT. POWER STORAGE BATTERIES AND ACCUMULATORS

INVENTION
Patent of the Russian Federation RU2242065

BATTERY WITH REGULATOR

BATTERY WITH REGULATOR

The name of the inventor: GARSHTEIN Vladimir (US); Nebrigich Dragan Danilo (US)
The name of the patent holder: Dze Beard of Trastizion of the University of Illinois (US)
Patent Attorney: Kuznetsov Yuri Dmitrievich
Address for correspondence: 129010, Moscow, ul. B. Spasskaya, 25, p. 3, LLC "Law firm Gorodissky & Partners", Pat. Yu.D. Kuznetsov, registration number 595
Date of commencement of the patent: 1999.04.01

The invention relates to batteries having a built-in controller. According to the invention, there is disclosed a battery having a built-in controller that increases battery life. The regulator can increase the battery life, for example, by converting the cell voltage to an output voltage that exceeds the electronic device's cut-off voltage by converting the cell voltage to an output voltage that is less than the battery cell's rated voltage, or by protecting the cell from peak current values . The regulator and may include a ground bias circuit that provides virtual grounding so that the converter can function at lower element voltages.

DESCRIPTION OF THE INVENTION

The present invention relates to batteries and, more particularly, batteries having a built-in controller for extending battery life.

Consumers use primary and rechargeable (secondary) batteries in portable electronic devices such as radios, CD playback systems, cameras, cellular telephones, electronic games, toys, pagers and computer devices. When the service life of the primary battery ends, the battery is usually discarded. The lifespan of a conventional primary battery allows only about 40-70% of the total battery capacity to be used altogether. After using this portion of the initial stored energy, the battery can not normally provide sufficient voltage to drive a conventional electronic circuit. Once the normal operation period has elapsed, consumers typically throw out the batteries, even if the battery still contains approximately 30-60% of its capacity. Thus, by extending the life of the primary battery, by providing reliable deeper discharge, waste is reduced, allowing electronic devices to use a larger battery capacity before it is discarded.

However, the full life of a rechargeable battery primarily depends on the number and efficiency of charging cycles. Rechargeable batteries can be recharged and reused after each discharge cycle. As with the primary battery, after using a certain percentage of the capacity of the rechargeable battery, the battery can not normally provide sufficient voltage to drive the electronic circuit. Thus, each discharge cycle of a rechargeable battery can be extended if the battery is depleted deeper. However, the discharge level of the rechargeable battery affects the amount and efficiency of future discharges of the rechargeable battery. In general, when the discharge depth of the rechargeable cells is increased, the number of charging cycles to which the rechargeable electrochemical cell can be subjected is reduced. However, the optimal discharge characteristics of specific types of rechargeable cells are varied within wide limits. In the case of a nickel-cadmium (NiCd) rechargeable battery, for example, deep discharge is preferred, because otherwise a "memory" effect may develop in a rechargeable battery if the battery is charged without adequate depletion, resulting in a decrease in capacity available for future charges. However, deep discharge of the lithium battery can damage galvanic cells. The lifetime of the rechargeable cell generally can be further increased by efficiently controlling the discharging and charging cycles of a particular cell such that the total number of charging cycles can be maximized and the amount of energy extracted from each discharge cycle of an electrochemical cell can be optimized.

In addition, consumers are constantly demanding increasingly miniature and lightweight portable electronic devices. One of the main obstacles to creating such devices with smaller and lighter dimensions is the size and weight of the batteries required to power the devices. In fact, when electronic circuits are created faster and more complex, they usually require even more current than before, and therefore the battery requirements become even higher. However, consumers will not accept more powerful and miniature devices, if increased functionality and speed will require them to significantly more frequently replace or recharge batteries. Thus, in order to make faster and more complex electronic devices without reducing their normal operation period, it is necessary to use batteries more efficiently in electronic devices and / or the batteries themselves should provide more complete use of stored energy.

Some more expensive electronic devices include a voltage regulator circuit such as a switching converter (eg, a DC voltage converter) in devices for converting and / or stabilizing the output voltage of a battery. In these devices, a plurality of single-cell batteries are typically connected in series, and the total voltage of these rechargeable batteries is converted by the converter to the voltage required by the load circuit. The converter can extend the battery life by reducing the battery output voltage in the initial battery discharge period, when the battery can otherwise provide a greater voltage, and hence more power than required by the load circuit, and / or by increasing the battery output voltage at the last discharge location Battery, when otherwise the battery would be depleted, because the output voltage becomes less than what is required by the load circuit.

However, the method of using a converter in an electronic device has several drawbacks. First, it is relatively expensive to place transducers in electronic devices, since each device manufacturer has certain circuit designs that are manufactured in a relatively limited amount and thus have a higher individual cost. Secondly, the suppliers of batteries do not control the entire type of converters, which can be used with a specific battery. Consequently, the transducers are not optimized for the specific electrochemical properties of each type of cell. Thirdly, different types of galvanic cells, for example alkaline and lithium cells, have different electrochemical properties and nominal voltages and, therefore, can not easily be interchanged. In addition to this, converters occupy valuable space in electronic devices. In addition, in some electronic devices, linear regulators can be used instead of more efficient switching converters, such as a constant voltage converter. In addition, electronic devices containing switching converters can create electromagnetic interference (EMF) that can adversely affect the adjacent circuitry in an electronic device such as a high frequency (HF) transmitter. However, due to the location of the converter in the battery, the EMF source can be located further away from the other EMC-sensitive electronics and / or can be screened by the conductive container of the battery.

Another problem with existing voltage converters is that they generally require a lot of galvanic cells, especially for alkaline, carbon-zinc, nickel-cadmium (NiCd), nickel-metal hydrate (NiMH) and Silver oxide batteries to provide sufficient voltage to drive the converter. To avoid this problem, existing converters typically require a plurality of cells connected in series to provide sufficient voltage to drive the converter, which can then lower the voltage to the level required by the electronic device. Thus, due to the requirements of the converter input voltage, the electronic device must contain several galvanic cells, even if only one element can be required for the electronic device itself. This leads to unproductive use of space and weight and prevents further miniaturization of electronic devices.

Thus, there is a need to optimally use the stored charge of the rechargeable battery and to optimize the depth of discharge before charging the battery in order to maximize the service life. By designing the batteries in such a way as to provide greater utilization of their stored energy, smaller sized or smaller batteries can be used in electronic devices to further miniaturize portable electronic devices.

The present invention discloses a battery in which a longer service life is provided by optimally using the stored charge of the primary or rechargeable battery before charging. The battery has a built-in regulator, which includes a converter capable of operating at a voltage below the voltage threshold of conventional electronic devices. The regulator more effectively regulates the voltage of the cell and provides the possibility of controlled discharge or the optimum discharge depth to extend the life of the battery. The controller is preferably located on a mixed type silicon chip that is made to order for a particular type of cell such as alkaline, nickel-cadmium (NiCd), nickel metal hydrate (NiMH), lithium, ionolithium, hermetically sealed lead-acid SLA), silver-oxide or hybrid element, or with a specific electronic device.

The regulator monitors and controls the supply of energy to the load in order to optimally extend the battery life by (1) turning the DC voltage converter on and off; (2) maintaining the minimum required output voltage when the input voltage is below the level at which conventional electronic devices can operate; (3) lowering the output resistance of the battery; (4) determining the optimum depth of discharge; (5) providing an optimal charging sequence; (6) increasing the discharge current that this galvanic cell can provide without a regulator; (7) providing a high discharge current within the reliability limits of the element, even if this current exceeds the maximum output current of the converter using the transmission mode; (8) measuring the remaining capacity of the element and (9) providing operational control signals to the element capacity indicators / fuel meters.

In a preferred embodiment, one controller is mounted inside the housing of a multi-cell primary or rechargeable battery (eg, a standard 9 V battery). This aspect of the present invention provides several distinct advantages over the placement of a regulator in an electronic device. First, it allows the battery designer to take advantage of the specific electrochemical characteristics of a particular type of cell. Secondly, if the device only requires a converter for a battery containing a particular type of cell (for example, lithium battery) to change and / or stabilize the battery output voltage, and not for a battery containing another type of cell (for example, NiCd, SLA) , And the converter is combined with a battery that requires a converter (i.e., with a lithium battery), the electronic device can be designed without a constant voltage converter. This allows the use of smaller circuit designs and prevents the effects associated with the converter from affecting the battery that does not need a converter.

In a particularly preferred embodiment, the controller is mounted inside the container of a single-cell battery of the type AAA, AA, C, D or prismatic battery or inside the container of each element of a multi-cell battery, such as a prismatic or standard 9 V battery. This aspect of the present invention provides the advantages listed above for placing one controller in a multi-cell battery and provides even more advantages. First, it allows the regulator to be coordinated with a particular type of cell to take advantage of its specific electrochemical reactions. Secondly, it allows the use of batteries having different types of electrochemical cells to be used interchangeably, by either changing or stabilizing the output voltage or internal impedance to meet the requirements of electronic devices designed to operate on a standard battery. Both of these advantages are found, for example, in an ultra-efficient lithium cell that meets the packaging and electrical requirements of a standard 1.5 V AA battery by using an integrated regulator to reduce the nominal voltage of the cell from a range of about 2.8 to about 4.0 V before the output Voltage of approximately 1.5 V. When using a higher voltage of the lithium cell, the developer can essentially increase the battery life.

In addition, by providing a regulator in each cell, the batteries provide much more efficient control of each element than exists at the present time. The regulator can monitor and control the discharge states in each primary galvanic cell and can ensure that each element is completely depleted before the electronic device shuts down. The regulator and can monitor or control the discharge cycle in each rechargeable cell to ensure that the cell is discharged to a level that provides the longest possible battery life and improves the reliability of the cell, preventing states such as memory effects, short circuits or harmful deep discharges. The regulator can directly control and control the charge cycle of each rechargeable cell in the battery in order to prevent states such as overcharging or short circuit, increasing the cycle time and increasing the reliability of the battery. On the charging status of individual elements and can be reported to consumers directly (using visual, audible, vibrational, etc. indicators) or through the "smart" interface of the device.

Regulators and allow universal use of batteries according to the present invention. The batteries of the present invention provide advantages over prior art batteries, regardless of whether they are used with electrical, electromechanical or electronic devices that have a disconnect voltage of the type listed above or with an electrical device. In the case of electrical, electromechanical and electronic devices or electrical appliances, the batteries of the present invention retain their maximum performance until a true end of the battery life has occurred. When using a regulator with a battery, the final part of the discharge curve of the actual voltage versus the discharge time can be profiled in such a way that it can simulate a normal discharge profile (without instantaneous service termination).

The crystals of the regulators can be made much more economical, since a large volume of the sale of batteries will provide the possibility of considerably less expensive production of crystals than can be done for each type of electronic device by individual designs of regulators or converters.

A preferred embodiment of the DC voltage converter is a highly efficient converter with an ultra low input voltage and an average power that uses a pulse width modulation or phase shift pulse modulation scheme and a low pulse skip mode control circuit with a start / stop generator control circuit.

Other features and advantages of the present invention are given with respect to describing a preferred embodiment of the invention.

Although the description ends with the claims that specifically indicate and clearly state the object that represents the present invention, it is believed that the invention will be better understood from the following description, which is shown in conjunction with the accompanying drawings.

- DRAWINGS -

The present invention relates to single-element and multi-element batteries. The batteries of the present invention can be either primary or rechargeable. The term "primary" is used in this application and refers to a battery or an electrochemical cell that is intended to be thrown out after the depletion of its available electrical capacity (i.e., they are not intended for recharge or other reuse). The terms "rechargeable" and "secondary" in this application are used interchangeably and refer to a battery or electrochemical cell that are intended to be recharged at least once after the depletion of their available electrical capacity (i.e., intended for reuse at least once ). The term "consumer" in this application refers to a battery that is intended for use in an electronic or electrical device purchased or used by a consumer. The expression "singleton" refers to a battery having a single cell packaged separately, such as a standard AA, AAA, C or D battery, or to one element in a multi-cell battery (for example, a standard 9 V battery type or a battery for a cellular telephone Communication or portable computer). The term "battery" as used in this application refers to a container having pins and one electrochemical cell or a housing that has pins and at least substantially two or more electrochemical cells (for example, a standard 9 V battery or a battery for a telephone Cellular phone or portable computer). The galvanic cells must not be completely enclosed by the housing, if each element has its own separate container. For example, a battery for a portable telephone set may contain two or more electrochemical cells each having its own separate container and packed together in a shrink wrapping plastic material that holds the individual containers together but can not completely cover the individual containers of the cells.

The term "hybrid battery" as used in this application includes a multi-cell battery that contains two or more electrochemical cells and from these elements at least two have different mechanisms for operating a chemical current source, such as photovoltaic, fuel, thermal, electrochemical, electromechanical and Etc., or a different electrode, a different electrode pair or a different electrolyte. The expression "battery cell" used in this application refers generally to the elements of a chemical current source used in a battery, including galvanic cells. Similarly, the elements of a chemical current source or an electrochemical current source are used interchangeably and describe various physical mechanisms of electricity generation, including chemical ones. In addition, the hybrid element may comprise additional energy storage components that improve the voltage and discharge characteristics of the cell, such as a super- or ultracapacitor, a high-efficiency inductor or a secondary cell with a low capacitance. The components of the hybrid elements can be manufactured to replace inactive structural components of the element, such as labels, seals, hollow terminals, etc.

The term "regulator" used in this application refers to a circuit that receives at least one input signal and provides at least one output signal that is a function of the input signal. The terms "constant-voltage converter" and "converter" in this application are used interchangeably and refer to a switchable type converter, i.e. a DC-controlled DC-to-DC converter, and known as an inverter for converting DC to AC, which converts the DC input voltage to the desired Output DC voltage. DC converters represent power electronic circuits, which often provide an adjustable output voltage. The converter can provide an increased voltage level, a reduced voltage level or an adjustable voltage with respect to the same level. Many different types of DC voltage converters are known in the art. The present invention, as far as possible, contemplates the use of known transducers or linear regulators, although less advantageously replacing the preferred transducers described in this application, which are capable of operating at lower voltage levels lower than conventional electronic devices can function.

The "trip voltage" of the electronic device represents the voltage below which the electrical or electronic device connected to the battery can not function. Thus, the "trip voltage" depends on the device, that is, the level depends on the minimum operating voltage of the device (the functional endpoint) or the operating frequency (for example, it should be possible to charge the capacitor within a given time interval). Most electronic devices have a trip voltage in the range of about 1 V to about 1.2 V, with some of the electronic devices having a trip voltage of up to approximately 0.9 V. Electrical devices that have mechanical moving parts, such as electric clocks, motors And electromechanical relays, and have a trip voltage, which is necessary to provide a current of sufficient magnitude to create an electromagnetic field strong enough to move mechanical parts. Other electrical devices, such as a flashlight, usually do not have a device shutdown voltage, but when the voltage of the battery supplying their energy decreases, the output power (for example, the intensity of the glow of the filament lamp) decreases.

If one galvanic cell energizes a device having a trip voltage, the cell is "exposed" to the device's disconnect voltage, in which the battery must provide an output voltage that is greater than or equal to the device's trip voltage, otherwise the device will shut down. However, if two or more sequentially plated cells are energized by the device, i.e., electrically connected between the positive input terminal and the negative input terminal, each galvanic cell is subjected to a part of the device's disconnect voltage. For example, if two galvanic cells are connected in series and energize the device, then each element is subjected to half the device's disconnect voltage. If three galvanic cells are connected in series and used to supply power to the device, then each galvanic cell is subjected to only one third of the device's trip voltage. Thus, if n elements are connected in series and energize the device, then each element undergoes a part of the device's trip voltage, which can be defined as the trip voltage divided by n, where n is an integer. If two or more electrochemical cells are connected in parallel to supply power to the electronic device, each element is still subjected to the full voltage of the device shutdown. In addition, in this application, if two or more cells are connected in series and this series connection is connected in parallel with one or more other cells, then each of the cells connected in series is subjected to the same portion of the trip voltage as if the series-connected cells were The only galvanic elements supplying the device with energy.

One aspect of the present invention is to increase the battery life. In the case of a primary battery, the battery life and battery life are interchangeable and defined as the discharge cycle time until the battery output voltage falls below the minimum operating voltage of the device that the battery supplies energy, i.e., the trip voltage of that device. Although the lifetime of an element depends on the most electrochemical cell, that is, the depletion of the entire electrochemical energy of the cell, the battery life depends on the device in which it is used. For example, an electronic device having a trip voltage of approximately 1 V will turn off when the battery's output voltage drops below 1 V, even if the cell may still have at least 50% of its remaining capacity of accumulated energy. In this example, the battery life has expired because it can no longer supply a sufficiently high voltage to drive the electronic device, and the battery is typically discarded. However, the duration of the element has not expired, because the element has the remaining electrochemical energy.

However, the rechargeable battery has many charge / discharge cycles. In a rechargeable battery, the "cyclic durability" is defined as the number of charge / discharge cycles that can be achieved. The expression "battery life" for a rechargeable battery refers to the time of one discharge cycle until the output voltage of the rechargeable battery falls below the disconnect voltage of the device that the battery supplies power or the discharge stops to ensure greater cyclic battery life. However, the "battery life" of a rechargeable battery refers to the total number of charging / discharging cycles in which each discharge cycle has an optimum running time. The expression "battery lifetime" of the rechargeable cell indicates the time required to achieve the optimum discharge depth of the cell in the mode under load during one discharge cycle of this cell. As described above, the cyclic life of a rechargeable battery is a function of the discharge depth to which the rechargeable element is subjected. When the depth of discharge increases, the battery life increases, but the cycle life and battery life are reduced. Conversely, when the depth of discharge decreases, the battery life is reduced, but the cyclic durability and battery life increase. However, in terms of device usage, shorter battery life is inconvenient. Thus, for each specific electrochemistry and design of the rechargeable battery, the relationship between the depth of discharge and the cyclic life can be optimized to ensure a longer battery life. One possible way to optimize the lifetime of a rechargeable battery is, for example, to compare the accumulated delivered energy, which can be defined as the product of the cyclic durability (i.e., the number of cycles) achieved at a particular discharge depth and the amount of energy recovered in each These cycles.

In this application, the expression "normal cell operation period" or "normal cell operation period" is used, regardless of whether the galvanic cell is a primary or a rechargeable cell, and correspond to the battery life in the sense that the "normal operation period of the cell" is A period of time until the element is no longer useful in a particular discharge cycle because the cell can no longer provide sufficient voltage to energize the device it supplies with electricity. If the duration of operation of the element in a single-cell battery increases or contracts, the period of normal operation of the cell and the duration of the battery operation, and necessarily increases or decreases, respectively. In addition, the expression "battery life" of a single cell battery and the "normal operation period of an element" are interchangeable in the sense that if either the "battery life" of a single cell battery or the "normal operation period" of an element increases or contracts, the other one And will, accordingly, increase or decrease. However, in contrast, the term "normal cell operation period" for a particular cell in a multi-cell battery is not necessarily interchangeable with the expression "battery life" of this multi-cell battery, because a particular cell may still have a remaining period of normal operation, How long the multi-cell battery will last. Similarly, if the duration of operation of the cell element of a particular cell in a multi-cell battery increases or contracts, the battery life does not necessarily increase or decrease, because the battery life may depend on the voltage of one or more other cells in the battery.

The expressions "optimum depth of discharge" or "depth of optimum discharge" of the rechargeable electrochemical cell used in this application refer to the residual capacity of the cell that maximizes the number of charge / discharge cycles and optimizes the operation time for each discharge cycle of this cell. The lifetime of the rechargeable cell can be greatly reduced if the cell is discharged below the "optimum discharge depth" for this cell (for example, to about 1.6 V for an SLA type element). Deep discharge, for example, of an ion-lithium element can damage the element and reduce the number and efficiency of future charging cycles for this element. Nevertheless, the nickel-cadmium (NiCd) cell is preferably discharged more deeply to prevent the "memory" effect from shortening the period of normal operation of the cell by decreasing the operation time of this element in future discharge cycles.

The expressions "electrically connected", "electrical connection" and "electrically connected" refer to the connections or connections that enable the continuous flow of current. The expressions "electronically connected" and "electronic connection" refer to compounds in which an electronic device such as a transistor or diode is included in the current path.

In this application, it is considered that "electronic connections" are a subset of "electrical connections", so that although each "electronic connection" is considered an "electrical connection", not every "electrical connection" is considered an "electronic connection".

The battery of the present invention includes one or more controllers that extend the battery life by optimizing the energy extraction in the discharge cycle of the primary or rechargeable battery and, in the case of a rechargeable battery, maximizing the number of discharge cycles. In one embodiment of the present invention, for example, the controller can perform one or more of the following functions: (1) discharge control, (2) charge control, (3) emergency control by detaching the element in the event of a short circuit, reverse polarity, charging (primary Element) or by passing the regulator, if the load requires a battery protection current that exceeds the rated current supplied by the regulator, (4) signaling of remaining capacity and critical levels of the remaining energy of the cell. The galvanic element (elements) can be assembled into either single-element or multi-element batteries. Multi-element batteries may include two or more electrochemical cells of the same type or include two or more electrochemical cells of various types in a hybrid battery. The multi-cell battery of the present invention may comprise galvanic cells electrically disposed in series and / or in parallel. The regulator (s) of the single-cell battery can be electrically connected in series and / or in parallel with the cell (s) inside the container of the cell and packed inside a casing that at least partially contains the cell of the element, or attached to a container, casing or marking or any other structure , Attached to the container or body. The regulator (s) of the multi-cell battery can be packaged together with one or more separate elements as described with respect to a single cell battery and / or can be packaged together with a combination of a plurality of cells such that the controller is connected in series or in parallel with a combination of cells.

The battery controller of the present invention can perform one or more of the functions listed above and can perform other functions in addition to the functions listed above. The battery controller of the present invention may comprise one circuit that performs each of the required functions, or may comprise separate sub-controllers, each of which performs one or more required functions. In addition, the sub-regulators can share circuits such as read-out circuits that can provide control signals to individual sub-controllers.

In all drawings, the last two digits of the component defining number are repeated in other drawings for the compared components, differ by one or two figures in front of the drawing. For example, the container 12 shown in FIGS. 1-3 is compared with the container 212 in FIG. 5A.

1 to 3 illustrate the structures of a conventional cylindrical battery 10 that are simplified for discussion. Each design of the cylindrical battery 10 has the same basic structural parts located in different configurations. In each case, the structure includes a container 12 having a shell or side wall 14, an upper cap 16 including a positive terminal 20, and a lower cap 18 including a negative terminal 22. The container 12 encloses one electrochemical cell 30. FIG. 1 depicts A configuration that can be used for the cylindrical single-carbon-zinc galvanic cell 30 of the battery 10. In this configuration, the entire upper cap 16 is conductive and forms a positive terminal 20 of the battery 10. An insulating washer or seal 24 isolates the conductive top cap 16 from the electrochemical cell 30. The electrode Or the current collector 26 electrically connects the external positive terminal 20 of the battery 10 and the cathode (positive electrode) 32 of the electrochemical cell 30. The lower cap 18 is completely conductive and forms an external negative terminal 22 of the battery 10. The lower cap is electrically connected to the anode (negative electrode) 34 of the galvanic Of the element 30. Between the anode 34 and the cathode 32, a separator 28 is arranged and provides an ionic conductivity means through the electrolyte. In a device of this type, for example, a coal-zinc battery is usually packaged.

2 shows an alternative battery design in which an insulating washer or seal 25 is shown insulating the lower cap 18 from the electrochemical cell 30. In this case, the entire upper cap 16 is conductive and forms a positive terminal 20 of the battery. The upper cap 16 is electrically connected to the cathode 32 of the electrochemical cell 30. The lower cap 18, which is conductive, forms a negative terminal 22 of the battery. The lower cap 18 is electrically connected to the anode 34 of the battery member 30 through a current collector 26. An isolator 28 is provided between the anode and the cathode and provides an ionic conductivity means through the electrolyte. Primary and rechargeable alkaline (zinc-manganese-dioxide) batteries, for example, are usually packaged in a device of this type.

FIG. 3 shows another alternative battery design in which a galvanic cell 30 is formed in the form of a "helically coiled jelly roll". In this construction, four layers are arranged side by side in a "layered type" construction. This "layered type" design can, for example, comprise the following order of layers: cathode layer 32, first layer separator 28, anode layer 34 and second layer separator 28. Alternatively, the second layer of spacer 28, which is not located between the cathode layers 32 and The anode 34 can be replaced by an insulating layer. This "layered type" structure is then folded into a cylindrical configuration of a spirally wound jelly roll and placed in the container 12 of the battery 10. An insulating washer or seal 24 is shown insulating the upper cap 16 from the electrochemical cell 30. In this case, the entire upper cap 16 is conductive and forms a positive Terminal 20 of the battery 10. The upper cap 16 is electrically connected to the cathode layer 32 of the electrochemical cell 30 through a current collector 26 and conductors 33. The lower cap 18, which is both conductive, forms a negative terminal 22 of the battery. Нижний колпачок 18 электрически соединен с анодом 34 элемента 30 батареи через проводящую пластину 19 основания. Слои разделителя 28 расположены между катодным слоем 32 и анодным слоем 34 и обеспечивают средство ионной электропроводности через электролит. Боковая стенка 14 показана соединенной и с верхним колпачком 16, и с нижним колпачком 18. В этом случае боковая стенка 14 предпочтительно образована из непроводящего материала типа полимера. Однако боковая стенка и может быть сделана из проводящего материала типа металла, если боковая стенка 14 изолирована по меньшей мере от положительной клеммы 20 и/или отрицательной клеммы 22 так, чтобы она не образовывала короткое замыкание между двумя клеммами. В устройстве такого типа часто упаковывают первичные и перезаряжаемые литиевые батареи, например типа первичной литий-марганцево-диоксидной (MnOz) батареи и перезаряжаемой литий-ионной, никель-кадмиевой (NiCd) и никель-металл-гидратной (NiMH) батареи.

Каждый из этих элементов может и включать в себя различные формы вентиляционных отверстий безопасности, рабочих вентиляционных отверстий для гальванических элементов, которые нуждаются в воздухообмене для работы, индикаторов емкости, этикеток и т.д., которые хорошо известны в технике. Кроме того, элементы можно создавать в виде других известных в технике конструкций, типа кнопочных элементов, элементов в форме монеты, призматических элементов, плоской пластины, биполярной пластины или элементов на основании толстых/тонких пленок и т.д.

In the present invention, the battery container 12 accommodates one galvanic cell 30. The container 12 includes all the elements necessary to isolate and protect the two electrodes 32 and 34, the separator and the electrolyte of the electrochemical cell 30 from the environment and from any other galvanic cells in a multiple cell Battery and supplying electrical energy from the electrochemical cell 30 beyond the container. Thus, the container 12 in FIGS. 1 and 2 includes a sidewall 14, a top 16 and a lower 18 caps and a positive 20 and a negative 22 terminals that provide an electrical connection of the cell 30. In a multi-cell battery, the container can be a separate structure that contains One galvanic cell 30, and this container 12 may be one of a plurality of separate containers in a multi-cell battery. Alternatively, the container 12 may be formed as part of the multi-cell battery case if the housing completely isolates the electrodes and electrolyte of one electrochemical cell 30 from the environment and each other cell of the battery. The container 12 can be made from a compound of a conductive material, such as a metal, and an insulating material, such as a plastic or polymer.

However, the container 12 must differ from the multi-cell battery body, which contains detachable individually insulated alkaline cells 630, each containing its own electrodes and electrolytes. For example, a standard 9 volt alkaline battery housing accommodates six separate alkaline cells 630, each having its own container 612, as shown in FIG. Each alkaline element 630 has an internal positive terminal 620 connected to an external positive terminal 621 and an internal negative electrode 622 connected to an external negative terminal 623. Advantageously, each alkaline element 630 can include a regulator 640 acting as described herein. However, in some lithium 9 V batteries, the battery case 611 is formed so that it has separate chambers that isolate the electrodes and the electrolyte of the cells 30, and thus the housing contains both separate containers 12 for each cell and a housing 611 for the entire multi-cell battery 610.

6 is a partially sectional perspective view of a multi-element 9 V battery 610 of the present invention in which each galvanic cell 630 has a regulator 640 within a separate element container 612. In this embodiment, the battery 610 comprises six separate cells 630, each having a nominal voltage of approximately 1.5 V. The battery 610, for example, may comprise three lithium cells, each having a nominal voltage of approximately 3 V Other designs of a multi-cell battery are known in the art, and they can be used to accommodate the regulator 640 of the present invention. For example, multi-element batteries include prismatic batteries, batteries having separate containers that are at least substantially wrapped together by shrink-wrapped plastic housings that contain a plurality of single-element containers, such as batteries for a cellular telephone and video camera.

5A, 5B and 5C illustrate partially exploded views of three embodiments of the present invention for single-element cylindrical primary batteries 210, 310 and 410. In FIG. 5A, a controller 240 is disposed between an upper cap 216 and an insulating washer 224 of a battery 210. A positive terminal 242 of the regulator 240 is electrically connected to the positive terminal 220 of the battery 210 that is directly adjacent to the regulator 240 and the negative terminal 244 of the regulator 240 is electrically connected to the negative terminal 222 of the battery 210. In this example, the negative terminal 244 of the regulator 240 is connected to the negative terminal 222 of the battery 210 through A conductive strip 245 and a conductive side wall 214 that is in electrical contact with the negative terminal 222 of the conductive lower cap 218 of the battery 210.

In this case, the conductive side wall must be electrically isolated from the upper cap 216. The positive lead 246 of the regulator 240 is electrically connected to the cathode 232 of the electrochemical cell 230 via a current collector 226. The negative input 248 of the regulator 240 is electrically connected to the anode 234 of the electrochemical cell 230 via a conductive strip 237. Alternatively, the regulator 240 may be located between the lower cap 218 and the insulator 225, or mounted, attached, or attached to the exterior of the container or battery label. The spacer 228 is disposed between the anodic electrical conductivity through the electrolyte of the electrochemical cell 230.

In FIG. 5B, the regulator 340 is located between the lower cap 318 and the insulator 325 of the battery 310. The negative terminal 344 of the regulator 340 is electrically connected to the negative terminal 322 of the battery 310 that is directly in contact with the regulator 340 and the positive terminal 342 of the regulator 340 is electrically connected to the positive terminal 320 Of the battery 310. In this example, the positive terminal 342 of the regulator 340 is connected to the positive terminal 320 of the battery 310 via a conductive side wall 314 that is in electrical contact with the positive terminal 320 of the conductive upper cap 316 of the battery 310. The positive lead 346 of the regulator 340 is electrically connected to the cathode 332 Of the galvanic cell 330 via a conductive strip 336. The negative input 348 of the regulator 340 is electrically connected to the anode 334 of the cell 330 via a current collector 326 that extends from the base plate 319 to the anode 334 of the cell 330. In such cases, the current collector 326 and the negative input 348 of the controller 340 should Be isolated from the negative terminal 322 of the container 312 and the negative terminal 344 of the controller 340, if the virtual ground is used in the controller 340. Alternatively, the regulator 340 can be positioned between the upper cap 316 and the insulator 324, or mounted, attached, or attached to the exterior of the container 312 or labeled the battery. The separator 328 is disposed between the anode conductor through the entire electrolyte of the electrochemical cell 330.

In FIG. 5C, the controller 440 is formed on the wrapper 441 using thick-film printing technology or flexible printed circuit boards (PCB) and is housed inside the container between the side wall 414 and the cathode 432 of the battery 410. The positive terminal 442 of the controller 440 is electrically connected to the positive terminal 420 of the battery 410 via The upper cap 416 of the battery 410 and the negative terminal 444 of the regulator 440 is electrically connected to the negative terminal 422 of the battery 410 through the base plate 419 and the lower cap 418. The positive lead 446 of the regulator 440 is electrically connected to the cathode 432 of the cell 430, which in this example is directly adjacent to Wrapper 441 comprising a regulator 440. The negative input 448 of the regulator 440 is electrically connected to the anode 434 of the electrochemical cell 430 through a contact plate 431 and a current collector 426 that extends from the contact plate 431 to the anode 434 of the cell 430. The isolating washer 427 isolates the contact plate 431 from the cathode 432. As shown in FIG. 5C, an insulating washer and can extend between the anode 434 and the contact plate 431 because the current collector 426 provides a connection from the anode 434 to the contact plate 431. If the controller 440 uses a virtual ground, the contact plate 431 must be isolated From the base plate 419 and the negative terminal 422, for example, an insulating washer 425. Alternatively, the wrapper 441 can be positioned on the outside of the container 412 wrapped around the outside of the side wall 414. In such embodiments, the label can cover the wrapper, or the label may Be printed on the same wrapper as the regulator itself.

4, 4A and 4B are block diagrams of various embodiments of the battery 110 of the present invention. FIG. 4 is a block diagram of one embodiment of a battery 110 of the present invention utilizing the integrated integrated controller IC 140. FIG. In this embodiment, a mixed-type integrated circuit is preferably used that has both digital and analog components. Alternatively, the regulator circuit may be manufactured using an application-specific integrated circuit (ICS), a hybrid integrated circuit design, a circuit board, or any other form of known circuit manufacturing techniques. The regulator circuit 140 may be located within the battery container 112 between the positive 132 and the negative 134 electrodes of the electrochemical cell 130 and the positive 120 and negative terminal 122 of the battery. Thus, the regulator 140 can connect the electrochemical cell 130 to the terminals 120 and 122 of the container 112, or disconnect the electrochemical cell 130 from them, alter or stabilize the output voltage or the output resistance of the element 130 that are connected to the battery terminals 120 and 122. FIG. 4A depicts one preferred embodiment of the battery 110 of the present invention shown in FIG. 4. FIG. In FIG. 4A, the controller 140 is connected between the positive electrode (cathode) 132 of the electrochemical cell 130 and the positive terminal 120 of the battery container 112. The negative electrode (anode) 134 of the cell 130 and the negative terminal 122 of the battery container 112 share a common ground with the controller 140. However, FIG. 4B shows an alternative preferred embodiment of the battery 110 of the present invention in which the controller 140 operates on a virtual ground and isolates The negative electrode 134 of the electrochemical cell 130 from the negative terminal 122 of the container 112 in addition to isolating the positive electrode 132 of the electrochemical cell 130 from the positive terminal 120 of the container 112.

Each of the embodiments shown in FIGS. 4A and 4B has its own advantages and disadvantages. The configuration of FIG. 4A, for example, makes it possible to use a simpler circuit design having a common ground for the galvanic cell 130, regulator 140, and the negative terminal 122 of the battery container 112. The configuration of FIG. 4A, however, has the drawback of requiring the converter to operate at true cell voltage levels, and may require the use of an inductor element. In the configuration shown in FIG. 4B, the virtual ground coupled to the negative terminal 122 of the battery container 112, both insulates the negative electrode 134 of the electrochemical cell 130 from the load, and allows the use of a DC voltage converter or charge charging. This configuration, however, has the disadvantage of requiring the increased complexity of the virtual grounding circuit to enable the voltage converter of the controller 140 to continue to function more efficiently when the voltage across the cell terminals is low (<1 V).

4C shows yet another embodiment of the battery 110 of the present invention having an integrated controller circuit 140 in which the controller circuit 140 includes four main components: a discharge sub-controller circuit 102, a charge-sub-controller circuit 104, an emergency-off-sub-controller circuit 106, and a circuit 105, which provides voltage control signals for the discharge sub-controller circuit 102 and / or the charge-sub-controller circuit 104 based on continuously or periodically measured operating parameters and / or physical states. The sensor circuit 105 can measure the performance of the electrochemical cell 130, such as the cell voltage, the current flowing from the cell, the phase shift between the voltage and current of the cell, and so on. In addition, the sensor circuit 105 can measure the operating parameters of the controller integrated circuit 140, such as the levels of the output voltage and current, the charging voltage and current levels, and so on. Further, the sensor circuit can also measure the physical states of the cell, such as temperature, pressure, pH, hydrogen and / or oxygen concentration, etc. The sensor circuit 105 can measure any combination thereof sufficient to effectively monitor the cell during the charging or discharging cycle, as is known in the art or described below.

However, the integrated circuit 140 of the battery controller 110 of the present invention does not have to perform each of the functions listed above. The controller circuit 140 can have, for example, only two or three of the components listed above, such as a discharge controller sub-controller circuit 102 and a sensor circuit 105, a charge-sub-controller circuit 104 and a sensor circuit 105, a sub-regulator alarm circuit 106, and a sensor circuit 105, or any combination thereof. Alternatively, the regulator circuit 140 can not have a sensor circuit 105 if the discharge controller circuit 102, the charge-sub-controller circuit 104, and / or the emergency-switch-off sub-controller circuit 106 that are included in the particular embodiment of the regulator circuit 140 have their own internal readout circuits, Necessary to perform their respective functions (functions). In addition, either the discharge sub-controller circuit 102, the charge-sub-controller circuit 104, or both can and function as an emergency-off sub-controller 106. The regulator circuit 140 and may have one or more sub-regulators or sensor circuit listed above, along with other sub-regulators that perform functions additional to the functions listed above.

The discharge controller circuit 102 controls discharging the battery cell (s) 130 of the battery 110 to provide a longer battery life by providing a safe deep discharge to use more of the stored primary battery power or by optimally using the stored energy of the rechargeable battery prior to recharging. The charging controller circuit 104 reliably and efficiently controls the charging of the battery cell (s) 130 of the battery 110 to which the regulator circuit 140 is connected. The emergency shutdown adjuster 106 disconnects the battery cell (s) from the battery terminals when the sensor circuit 105 detects a dangerous condition such as a short circuit, reverse polarity, overcharge state, or overcharge condition. The emergency shutdown sub-controller 106 provides an electrical by-pass connection of the discharge regulator, if the load requires a large safe current, which, however, exceeds the rated current supplied by the regulator.

However, in a preferred embodiment of the primary battery of the present invention, the controller 140 may preferably include a discharge sub-controller circuit 102, an emergency-off sub-controller 106, and a sensor circuit 105. The sensor circuit 105 preferably continuously monitors the operating parameters and physical states of the electrochemical cell 130. The discharge controller circuit 102 preferably provides a more reliable, deeper discharge of the primary electrochemical cell (s) 130 of the battery 110 to provide a longer service life before the battery is discarded. The emergency switch-off sub-controller circuit 106 preferably disconnects the battery element (s) from the battery terminals 120, 122 when the sensor circuit detects a dangerous condition or provides a bypass connection if the rated current required by the load exceeds the controller capability but is within the safe discharge current range of the cell.

In a preferred embodiment of the rechargeable battery 110 of the present invention, the regulator circuit 140 may further include a charge-sub-controller circuit 104. The charging controller circuit 104 reliably and efficiently controls the charging of the battery cell (s) 130 of the battery 110 to which the regulator circuit 140 is connected. The sensor circuit 105 preferably continuously and directly monitors the operating parameters of the regulator circuit 140 and the physical states in the electrochemical cell 130. For example, the sensor circuit 105 can monitor the cell voltage, charge current, internal impedance of the cell (s), the concentration of hydrogen or oxygen , PH, temperature, pressure or any other operating parameters known in the art or physical state.

In a particular preferred embodiment, each galvanic cell has its own integrated regulator circuit 140 that monitors the states in that particular element. By directly monitoring the states of each particular element, charging sub-controller 104 can provide better reliability and efficiency than a known charging controller that monitors a battery having a plurality of electrochemical cells. The charge controller 104 minimizes the losses by using the instantaneous charge amount of the cell (s) and the maximum capacity of the cell in order to continuously optimize charging states.

Each controller may include one or more of the following sub-controllers: (1) a discharge sub-controller 102, (2) a charge sub-controller 104, and / or (3) an emergency-off sub-controller 106. For simplicity of discussion, the functions of the regulator are described on the basis of sub-regulators. However, the actual implementation of the controller 140 of the present invention does not require independent circuit executions for each function, since the plurality of functions that are performed by the controller can be and are preferably combined into one circuit. For example, each sub-controller may have its own internal sensor circuits to measure one or more operating parameters of the controller and / or physical states of the cell (s), or the independent sensor circuit can measure parameters and / or states and feed them and / or control signals with respect to Parameters and / or states to one or more sub-regulators. Further, the controller may have additional or alternative sub-regulators that perform other functions in addition to one or more of the functions listed herein.

DISCHARGE ADJUSTOR

A discharge sub-controller 102 in accordance with the present invention can extend the life of a primary or rechargeable battery in one of several ways. First, in the case of a multi-element battery that contains at least one primary galvanic cell or at least one rechargeable element, which is preferably completely discharged before charging (for example, the NiCd element is preferably discharged by approximately 100% but not more), the sub-controller May allow one or more battery cells (cells) of the battery to be discharged by the electronic device more deeply than would otherwise be possible. For example, the discharge sub-controller may allow the single-cell battery to be discharged below the point at which the cell voltage falls below the device's disconnect voltage. In the case of a primary battery, the battery life can be increased by as deep as possible discharging the cell (s) before it is ejected. However, in the case of a rechargeable battery, the battery life is increased by discharging the cell to the optimum discharge depth. Thus, if the optimum discharge depth of the rechargeable cell is lower than the device shutdown voltage that the rechargeable battery supplies with energy, the lifetime of the rechargeable battery can be increased if it is possible for the rechargeable cell to discharge below the trip voltage of that device.

In this application, the expression "deep discharge" refers to enabling the galvanic cell (s) to discharge at least 80% of the nominal capacity of the cell (s). In addition, the expression "substantial discharge" in this application refers to enabling the galvanic cell (s) to be discharged to at least 70% of the nominal capacity of the cell (s). The "overdischarge" in this application refers to the discharge of a galvanic cell beyond 100%, which can lead to reverse voltage. For example, the currently available commercially available alkaline battery is generally capable of delivering about 40 to 70% of its stored energy capacity to a voltage level of the cell that is a voltage level not sufficient to excite the electronic device. Thus, the sub-controller of the present invention preferably provides an alkaline cell that is capable of discharging more than about 70% before the battery is disconnected. More preferably, the sub-regulator provides a discharge level of more than about 80%. Even more preferably, the sub-regulator provides a discharge level of more than about 90%, and most preferably more than about 95%.

The discharge sub-controller 102 may include a converter that converts the cell voltage to a desired output voltage of the primary or rechargeable battery. In the primary battery, it provides a deeper discharge of the galvanic cell (s) and, as a result, prolongs the life of the battery. In a rechargeable battery, however, the converter allows the regulator to discharge the rechargeable battery to the optimum discharge depth, regardless of the disconnect voltage of the device. In one embodiment of the present invention, the sub-controller can continuously convert the cell voltage to the desired output voltage throughout the duration of the battery operation. When the cell voltage falls to the device shutdown voltage level where the battery discharge is normally turned off, the converter increases or increases the cell voltage to a level at the battery output that is sufficient to continue driving the device until the voltage level falls below the minimum required voltage required To actuate the sub-controller, or to the optimum discharge depth for the rechargeable cell. Thus, a battery having a sub-controller design that is capable of operating at a lower voltage level than a sub-controller of another battery provides a battery capable of discharging more deeply, regardless of the voltage level of the cell.

In the case of the hybrid element, the discharge sub-controller may include a low-voltage converter that converts the voltage of the cells to the desired output voltage of the primary or rechargeable battery. The discharge sub-controller 102 can continuously convert the voltage of the cell to the desired output voltage during the duration of operation of the primary or rechargeable battery. Thus, a hybrid battery having a sub-controller design that is capable of operating at a lower voltage level than a sub-regulator of another battery provides a battery that can be compatible with the conventional low voltage produced by many electrochemical cells such as photocells, fuel cells, heat and mechanical elements . The cell discharge sub-controller 102 can provide additional energy if the hybrid battery contains a primary cell. A discharge sub-controller and can use galvanic cells to charge secondary cells or provide additional energy.

In preferred embodiments of the present invention, the converter operates only when the cell voltage falls to a predetermined voltage level or lower. In such embodiments, the internal losses of the converter are minimized, because the converter functions only when necessary. The predetermined voltage level is preferably in the range from the nominal voltage of the cell to the highest breaking voltage of the class of devices for which the battery is intended. More preferably, the predetermined voltage level slightly exceeds the highest breaking voltage of the class of devices for which the battery is intended. For example, the predetermined voltage level may range from a level approximately equal to the highest trip voltage of the class of devices for which the battery is intended to a level approximately equal to the trip voltage plus 0.2 V, preferably in the range from about the highest voltage Disconnecting the class of devices for which the battery is intended to a level approximately equal to the trip voltage plus 0.15 V, more preferably in the range from about the highest disconnect voltage of the class of devices for which the battery is designed to a level approximately equal to the breaking voltage , Plus 0.1 V and even more preferably in the range from about the highest breaking voltage of the class of devices for which the battery is designed to a level approximately equal to the trip voltage plus 0.05 V. For example, a galvanic cell having a nominal voltage, Approximately 1.5 volts, typically has a predetermined voltage between about 0.8 volts and about 1.8 volts. Preferably, the predetermined voltage is between about 0.9 volts and about 1.6 volts. More Preferably a predetermined voltage is in the range between about 0.9 V and about 1.5 V. Still more preferably, the predetermined voltage is in the range between about 0.9 V and about 1.2 V, with an even more preferred range between approximately 1.0 V and approximately 1.2 V. The most preferred is a voltage level slightly higher or equal to the highest breaking voltage of the class of devices for which the battery is intended. However, a sub-controller designed to operate with a galvanic cell having a nominal voltage of approximately 3.0 V can generally have a predetermined voltage level in the range of about 2.0 V to about 3.4 V. Preferably, the predetermined voltage Is in the range of about 2.2 V to about 3.2 V. More preferably, the predetermined voltage is in the range of about 2.4 V to about 3.2 V. Even more preferably, the predetermined voltage is in the range of about 2, 6 V to about 3.2 V, with an even more preferred range of about 2.8 V to about 3.0 V. Most preferred is a voltage level slightly above or equal to the highest trip voltage of the class of devices for which the battery is designed.

When the cell voltage drops to a predetermined voltage level or lower, the discharge sub-controller turns on the converter and raises the cell voltage to a desired output voltage sufficient to drive the load. This eliminates the loss of the converter which is not required when the voltage across the terminals of the cell is high enough to drive the load, but then enables the cell to continue to discharge even after the cell voltage falls below the level required to drive the load, , Until the cell voltage reaches the minimum operating voltage of the converter in the case of the primary element, or in the case of the rechargeable element, until the voltage on the cell terminals reaches the optimum discharge depth. The sub-controller may use any one or more of a number of control mechanisms, from a simple combination of a voltage comparator and an electronic switch that turns on the converter when the cell voltage falls to a predetermined voltage level, to more complex control schemes such as those described below.

The universal battery of the present invention, which is designed for this output voltage, is preferably capable of extending the battery life when it is used to supply power to the device. The term "universal" battery used in this application means a battery that can provide a uniform or standard voltage, regardless of the element's electrochemistry or the physical mechanism of the cell. Thus, the battery of the present invention is preferably designed to extend its service life by maintaining the battery output voltage at a level greater than or equal to the trip voltage of the device until the built-in sub-controller ceases to operate when the voltage of the primary cell (s) falls to a level lower Which the sub-controller can no longer function, or when the rechargeable cell is discharged to its optimum discharge depth. The battery of the present invention, which is designed to power a particular electronic device of a narrow class or electronic devices that have similar trip voltages, can be specifically designed to work more efficiently by more closely matching a predetermined voltage level to the voltage (s) (Devices).

Secondly, the discharge sub-controller 102 can be used to extend the lifetime of the rechargeable cell by optimally discharging the cell, in order to increase the number or efficiency of charging cycles. For example, in a sealed lead-acid cell, a deep discharge can damage the cell and / or reduce the number or efficiency of future recharging cycles. The sub-controller may, for example, control the discharge of a particular type of rechargeable cell so that the discharge cycle terminates when the cell voltage reaches a predetermined voltage level which is the optimum discharge depth for that type or a particular electrochemical cell. In a lead-acid rechargeable cell, for example, a predetermined voltage level is in the range of about 0.7 V to about 1.6 V at a more preferred level of about 0.7 V. In a lithium-MnO 2 rechargeable cell, For example, a predetermined voltage level is in the range of about 2.0 V to about 3.0 V at the most preferred level of about 2.4 V. Alternatively, the discharge sub-controller may terminate the discharge cycle when the internal impedance of the rechargeable Of the galvanic cell reaches a predetermined level of impedance that corresponds to the maximum of the required discharge depth for this type or a particular electrochemical cell. Thus, in a battery of the present invention comprising at least one rechargeable cell which is preferably discharged not deep beyond the optimum discharge depth, a discharge sub-controller can be used to extend the battery life by completing the discharge cycle when the cell voltage reaches a predetermined value Or when the internal impedance of the element reaches a predetermined level of internal impedance, or as indicated by any suitable built-in chemical sensor.

Thirdly, the discharge sub-controller may also lower the voltage of the cell (s) having a nominal voltage greater than the desired output voltage and / or change the output resistance of the battery cell (s). This not only prolongs the battery life, but also ensures greater interchangeability between galvanic cells having different rated voltages than is possible otherwise, enables developers to take advantage of the greater accumulation potential of cells having a higher rated voltage and allows developers to modify The output resistance of a specific cell to match the impedance to the desired level, or to increase the interchangeability of the cell with other types of cells, and / or to increase the efficiency of the cell with a particular type of load. In addition, galvanic cells that are inefficient, environmentally hazardous, expensive, etc. And are usually used only because a particular nominal voltage is required, such as a mercury-cadmium cell can be replaced with safer, more efficient or cheaper galvanic cells having an increased or lowered their rated voltage or a variable output impedance to meet the required rated voltage or output Resistance required by this application.

For example, a galvanic cell having a nominal voltage of approximately 1.8 V or higher can be mounted with a sub-regulator which lowers this higher rated voltage to a standard nominal level of about 1.5 V so that the battery can be used interchangeably with A battery having a nominal voltage of approximately 1.5 volts. In one specific example, a standard lithium element of the primary lithium-MnO 2 element type having a nominal voltage of approximately 3.0 volts can be mounted in a battery with a down-regulator to allow the battery An output voltage of approximately 1.5 volts. This provides a battery having a capacity of at least twice the capacity of a battery having a cell with a nominal voltage of about 1.5 volts and the same volume. In addition, this provides a high voltage lithium cell, which is really interchangeable with a standard alkaline or carbon-zinc single cell battery, without the need to chemically lower the high potential of lithium. Further, the rechargeable lithium ion cell has a nominal voltage of about 4.0 V. The cell can be packaged in a battery with a down regulator such that a single cell battery has an output voltage of approximately 1.4 volts. The lithium ion battery of the present invention can be interchangeable With a standard single-cell NiCd or NiMH rechargeable battery, but can provide approximately two to three times the capacity of a single-element NiCd or NiMH battery having the same volume.

Additionally, batteries having galvanic cells such as lithium ion, magnesium, air-magnesium and air-aluminum, and have rated voltages above about 1.8 volts and can be used interchangeably with a standard battery having a nominal voltage of about 1.5 volts. Different types of galvanic cells can not only be used interchangeably, but different types of electrochemical cells can be collected together in a hybrid battery. Thus, different types of batteries having different galvanic cells with different nominal voltages or internal impedance can be used interchangeably, or it is possible to produce hybrid batteries having different types of cells and elements such as photocells, fuel cells, heat and mechanical elements and Etc.

Alternatively, galvanic cells that have rated voltages below that at which a conventional electronic device operates can be used with a discharge sub-controller 102 having a built-in boost converter to increase the nominal voltage. This makes it possible to use a battery having this type of electrochemical cell to be used with a device that requires a higher voltage level than would otherwise be provided by the cell. In addition, a battery having this type of element can also be used interchangeably with a standard alkaline or carbon-zinc galvanic cell. This can provide industrially feasible, usable batteries having galvanic cells that were not otherwise considered for use by consumers, since their rated voltages were too low for practical use.

In addition, some galvanic cells that have rated voltages below the level at which a conventional electronic device can operate can be used with a discharge sub-controller having a built-in boost converter to increase the nominal voltage. This allows the creation of a hybrid battery having this type of cell to be used with a device that requires a higher voltage level than would otherwise be provided by the cell. In addition, a battery having this type of element can also be used interchangeably with a standard alkaline or carbon-zinc galvanic cell. This can provide industrially feasible, usable batteries having hybrid elements that would otherwise not be considered for consumer use because the nominal voltages were too low for practical use.

The table is not intended to be exclusive, but rather lists exemplary primary, rechargeable and backup electrochemical cells that can be used in the battery of the present invention. For example, various types of primary and / or rechargeable cells that have different nominal voltages or internal impedance can be used with a converter to create a universal single-cell battery that has the same output voltage as a standard 1.5-volt primary or rechargeable battery Battery or standard 1.4-volt NiCd rechargeable battery. In addition, primary, secondary and / or backup elements can be used together in a hybrid multi-cell battery of the present invention. Indeed, the present invention provides a large interchangeability between different types of cells and between cells and alternative power sources, such as fuel cells, capacitors, etc., than ever before. By placing the regulator in each galvanic cell, it is possible to regulate the electrical characteristics such as the nominal voltage and output resistance of various types of electrochemical cells, in order to enable the use of a larger variety of elements when creating interchangeable rechargeable batteries. Batteries can be specially designed to take advantage of the specific advantages of the cell, while still providing the possibility of interchangeability with batteries that contain other types of cells. Further, the present invention can be used to create new standard voltage levels by converting the nominal galvanic cell voltages to standard voltage levels.

The same is true for physical mechanisms that are different from the chemical mechanisms used to generate electrical energy. A conventional single photocell, fuel, heat and mechanical (for example, the PST) cell has its output voltage well below the standard voltage of the device or other electrochemical cell. The present invention makes it possible to combine a low-voltage chemical current source and a standard electrochemical system into one hybrid element or independent elements to provide power to devices requiring a voltage equal to or different from the voltage of the hybrid element or independent elements.

In addition, in hybrid batteries, galvanic cells that are incompatible otherwise, specially designed for specific types of applications, can be used together. For example, in a hybrid battery, an air-zinc galvanic cell can be used together with a lithium cell connected either in parallel or in series. The air-zinc element has a nominal voltage of approximately 1.5 V, and a very high amount of stored energy per unit of weight, but can only provide low levels of steady-state current. However, the lithium cell has a nominal voltage level of approximately 3.0 V, and can provide short bursts of high current levels. The discharge regulators of each galvanic cell provide the same nominal output voltage and enable them to be located either in parallel or in a series of electrical configurations. When the elements are in a parallel configuration, the sub-regulators and prevent the cells from charging each other. A sub-controller for each element can be used to connect or disconnect any or both of the elements as required by the load. Thus, when the load is in low power mode, the air-zinc element can be connected to provide a stable, low current, and when the load is in high power mode, the lithium cell or the lithium and air-zinc cells in combination can provide a current, Necessary to supply electricity to the load.

Hybrid batteries and can contain many different combinations of electrochemical cells, such as primary and secondary cells, primary and secondary cells, secondary and backup elements, or primary, secondary and backup elements. Further, the hybrid battery may comprise a combination of one or more electrochemical cells and one or more additional power supplies, such as photocells, fuel cells, heat and mechanical cells, a conventional capacitor or even a super / ultracapacitor. For example, a hybrid battery may comprise combinations such as alkaline and air-metal cells, air-metal and secondary cells, an air-metal element, and a supercapacitor. Moreover, hybrid batteries can and contain any combination of two or more of the above-mentioned elements or power supplies.

Further, the discharge sub-controller can also extend the battery life by protecting the cell from the current peaks, which can degrade the performance of the components of the cell and reduce the cell voltage. For example, the sub-controller can prevent high current consumption from generating a memory effect in the cell and reducing the duration of operation of the cell (s). Peaks of current and harmful for galvanic cells such as alkaline, lithium, NiCd, SLA, metal hydride and air-zinc elements.

The discharge sub-controller can protect the galvanic cell from current peaks by providing temporary accumulation of electric charge at the output of the sub-regulator so that temporary storage can be used for an urgent requirement. Consequently, the need for current peaks can be completely eliminated or significantly reduced before it reaches the cell. This allows the battery to provide peaks of current higher than can directly provide a galvanic cell (elements), and protects the galvanic cell (s) from peaks of current, which can be harmful to the components of the element. The temporary storage element is preferably a capacitor. This capacitor can be any type of condenser that is known in the art, for example a conventional capacitor, a thick film capacitor or even a super / ultracapacitor. FIG. 13, for example, shows a capacitor C f connected between the output terminals 1320 and 1322 of the container 1312.

One discharge sub-controller preferably extends battery life by protecting the cell from current peaks and converting the cell voltage to the desired output voltage. For example, a preferred embodiment of the sub-controller may include a converter when the cell voltage falls to a predetermined voltage to minimize losses associated with the converter. The same sub-controller can monitor both the cell voltage and the output current of the load, and turn on the converter if either the cell voltage reaches a predetermined voltage level or the load current reaches a predetermined level. Alternatively, the sub-controller can monitor the cell voltage and output current of the load and determine whether the supply of the required load current reduces the cell voltage below the trip-out voltage level. In the latter example, the sub-controller operates from two input signals combined in the algorithm to determine whether the converter is to be turned on. However, in the previous example, the sub-controller turns on the converter if either the cell voltage drops to a predetermined voltage level or the output load current rises to a predetermined level. Along with other possible management schemes, this is discussed in more detail below.

The present invention relates to specialized batteries, as well as standard consumer batteries, such as AAAA, AAA, AA, C or D batteries and 9 V batteries. The invention contemplates the use of specialized primary batteries and hybrid batteries that can be used in a variety of applications. It is expected that these specialized batteries and hybrid batteries can be used to replace rechargeable batteries for such uses as for cellular telephones, portable computers, etc., which are currently limited to the ability of primary batteries to provide the required rated current for a sufficient Period of time. In addition, having the ability to separately control the output voltage and the output impedance of the cells, it is possible for battery designers to design entirely new types of hybrid batteries using different types of elements in combination or alternative power supplies such as photocells, heat, fuel and mechanical elements, conventional capacitors Or even super / ultracapacitors, in the same hybrid battery.

An increase in the interchangeable types of galvanic cells can also allow battery designers to provide standard primary or rechargeable batteries in order to reduce the calculation of battery-on-demand developed for specific devices such as cellular telephones, portable computers, video cameras, cameras, etc. The consumer can simply buy standard batteries to power the cellular telephone, and as the consumer can now buy them for a flashlight or tape recorder, instead of having to purchase a battery specially made for a particular type, brand and / or model of the electronic device. In addition, as the number of standard batteries produced increases, the cost per unit decreases rapidly, resulting in significantly more affordable batteries that can eventually replace specially designed rechargeable batteries. In addition, primary and rechargeable batteries and can be used interchangeably with each other. For example, if the laptop's rechargeable batteries were completely depleted, the user could purchase primary batteries that would last several hours of use until the user can charge rechargeable batteries. The user can buy less expensive batteries if he does not need some higher levels of performance that can be provided by means of a device with more expensive batteries.

Electronic marking technology of the type used on photographic film, etc. And can be used to indicate the exact type of element (s) in the battery, the nominal and / or remaining capacity of the element (s), peak and optimal current supply capabilities, current charging level, internal impedance, etc., so that the "smart" device Could read the electronic marking and optimize its consumption, to improve the characteristics of the device, to extend the battery life, etc. A camera that already uses electronic marking to determine the speed of the film (film speed sensitivity) can, for example, use electronic marking technology with its batteries to allow for slower charging of the flash, stopping the use of the flash, etc., in order to optimize Battery life. In the portable computer, electronic marking technology can be used to determine the most efficient operating parameters for specific batteries by, for example, changing their performance, in order to better utilize the remaining charge in the battery for the time required by the user, or using the power on / off technology for Save battery power. In addition, video cameras, cellular telephones, etc. Can also use electronic marking to optimize the use of batteries.

The present invention relates to standard consumer batteries such as AAA, AA, C or D and 9 V batteries. In addition to primary batteries interchangeable with various types of primary or even rechargeable batteries, standard primary or rechargeable batteries may be available for applications therein , Where only custom-made batteries are currently available. Depending on their needs, for example, consumers can buy one or more of the standard primary or rechargeable batteries that they can install directly into their portable computers, video cameras, cellular telephones and other portable electronic equipment. As mentioned above, with the increase in the number of standard batteries produced, the cost per unit quickly decreases, making the batteries much more affordable, so that ultimately they can replace specially designed rechargeable batteries.

To increase the service life of primary batteries or rechargeable batteries that have a relatively low optimum discharge depth, it is possible to design a discharge sub-controller for operation even at lower voltages than achieved in circuit manufacturing technology. For example, a discharge sub-controller can be designed to operate at voltage levels up to about 0.1 V in an embodiment on silicon carbide (SiC), up to about 0.34 V in an embodiment on gallium arsenide (GaAs) and up to about 0.54 V In a conventional embodiment based on silicon. In addition, as the print size (photolithography) decreases, these minimum operating voltages decrease. For example, in silicon, reducing the circuit printing to 0.18 micron, the technology reduces the minimum operating voltage from about 0.54 V to about 0.4 V. As described above, the lower the minimum required operating voltage of the discharge sub-controller, the lower this discharge sub-controller Can regulate the cell voltage to provide the deepest discharge of the primary cell, or to optimally discharge the rechargeable cell up to a low optimum discharge depth. Thus, the invention encompasses the use of various advances in circuit fabrication, in order to increase battery utilization up to about 100% of the stored charge of the cell. However, the present silicon-based embodiment allows up to 95% of the stored battery potential to be used, which is very high compared to an average use value of 40-70% of primary cells without a regulator.

In one preferred silicon embodiment, for example, a discharge sub-controller 102 is designed to operate at voltages of up to about 1 V, more preferably about 0.85 V, even more preferably about 0.8 V, even more preferably about 0.75 B, even more preferably about 0.7 V, even more preferably about 0.65 V, even more preferably about 0.6 V at the most preferred level of about 0.54 V. In the sub-regulator designed for a galvanic cell having a nominal A voltage of approximately 1.5 V, the sub-regulator is preferably capable of operating at an input voltage of at least about 1.6 V. More preferably, the discharge sub-controller is capable of operating at an input voltage of at least about 1.8 V. Thus, The preferred sub-controller should be able to operate in a voltage range from a minimum of about 0.8 V to at least 1.6 V. However, the sub-regulator can and preferably functions both outside and outside this range.

In a preferred embodiment, the discharge sub-controller 102 of the present invention designed for use with a primary lithium-MnO 2 cell type 30 cell having a nominal voltage of about 3.0 V, however, the sub-controller must be able to operate at a higher voltage level than Is required for a discharge sub-controller used in conjunction with a galvanic cell having a nominal voltage of about 1.5 V. In the case of a cell having a nominal voltage of approximately 3.0 V, the discharge sub-controller is preferably able to operate in a range from about 2.4 V to Approximately 3.2 V. More preferably, the sub-regulator is capable of operating in a voltage range of from about 0.8 V to at least about 3.2 V. More preferably, the sub-regulator is capable of operating at an input voltage in the range of from about 0.6 V to at least about To 3.4 V. Still more preferably, the sub-regulator is capable of operating at an input voltage in the range of from about 0.54 V to at least about 3.6 V, with a most preferred range of about 0.45 V to at least about 3.8 B. However, the sub-controller may and preferably functions both outside and outside this range.

However, in a preferred embodiment, the discharge sub-controller 102 of the present invention, designed for use with a lithium-ion cell type electrochemical cell 30 having a nominal voltage of approximately 4.0 V, the sub-regulator should be able to function even with a higher voltage level than Is required for a discharge sub-controller used in conjunction with a cell having a nominal voltage of approximately 3.0 or about 1.5 V. In the case of a cell having a nominal voltage of about 4.0 V, the discharge sub-controller is preferably capable of operating in a range from about 2.0 V to about 4.0 V. More preferably, the sub-regulator is capable of operating in a voltage range of from about 0.8 V to at least about 4.0 V. More preferably, the sub-regulator is capable of operating at an input voltage in the range of about 0, 6 V to at least about 4.0 V. Still more preferably, the sub-regulator is capable of operating at an input voltage in the range of from about 0.54 V to at least about 4.0 V, with the most preferred range from about 0.45 V to To at least about 4.0 V. However, the sub-regulator can and preferably functions both outside and outside this range.

In an alternative preferred embodiment, it is able to operate with a cell having a nominal voltage of either about 1.5 V or about 3.0 V. In this embodiment, the discharge sub-controller is capable of operating at a minimum input voltage of approximately 0.8 V , Preferably about 0.7 V, more preferably about 0.6 V and most preferably about 0.54 V, and the maximum input voltage is at least about 3.2 V, preferably about 3.4 V, more preferably about 3, 6 V, and most preferably about 3.8 V. For example, the discharge sub-controller may be capable of operating in a range of from about 0.54 V to about 3.4 V or from about 0.54 V to about 3.8 V or from about 0 , 7 V to about 3.8 V, etc.

The batteries of the present invention provide distinct advantages over conventional batteries when used with electric devices such as flashlights etc. which do not have a turn-off voltage. In the case of a conventional battery, when the battery is discharged, the output voltage of the battery decreases. Since the output of the electrical device is directly proportional to the voltage supplied by the battery, the output of the electrical device decreases in proportion to the output voltage of the battery. For example, the brightness of the glow of a flashlight incandescent lamp continues to decrease when the output voltage of the battery drops until the battery is completely discharged. However, the battery of the present invention has a discharge sub-controller that adjusts the cell voltage to a relatively constant, controlled voltage level throughout the entire battery discharge cycle until the voltage of the cell 30 drops to a voltage level below which the sub-controller is unable to operate. At this time, the battery will turn off and the electrical device will stop working. However, during the discharge cycle, the electrical device will continue to provide a relatively stable output (eg, the glow of an incandescent lamp) and full functionality until the battery turns off.

A preferred embodiment of the battery of the present invention and includes a warning of the user of a low remaining charge, and an indicator of the remaining capacity. For example, the discharge sub-controller may periodically disconnect the battery element (s) from the battery output terminals for a short duration and reconnect it when the voltage of the cell reaches a predetermined value. This may provide an indication that the battery capacity is reduced, visually, audible, vibrating or read by the device. In addition, the sub-controller can artificially recreate the conditions for accelerated battery discharge by reducing the battery's output voltage at the end of the normal battery life. For example, the sub-controller may begin to linearly lower the output voltage when the stored battery capacity is approximately 5% of its nominal capacity. This can provide an indication to the user, for example, by lowering the volume in the magnetic recording or CD playback system, or providing an indication for a device that can respectively alert the user.

7 is a block diagram of one embodiment of the present invention in which the DC voltage converter 750 of the discharge sub-controller 702 is electrically or preferably electronically connected between the positive 732 and negative 734 electrodes of the electrochemical cell 730 and the positive 720 and negative 722 terminals of the container 712. The converter 750 converts the cell voltage between the positive 732 and the negative 734 electrodes of the cell 730 to the output voltage at the positive 720 and negative 722 terminals of the container 712. The DC voltage converter 750 can provide up-conversion, down-conversion, up-and-down conversion Voltage or voltage stabilization at the output terminals 720 and 722. In this embodiment, the DC voltage converter 750 operates in a continuous mode in which the output voltage of the cell 730 is converted to a stable output voltage at the container terminals 720 and 722 for the duration of the battery operation. This embodiment stabilizes the output voltage of the container 712 at the output terminals 720 and 722. Providing a stable output voltage allows electronic device designers to reduce the complexity of the power management circuits of electronic devices and, accordingly, to reduce the size, weight and cost of devices.

The DC voltage converter 750 continues to operate until the voltage of the cell 730 drops below either the optimum discharge depth of the cell in the case of the rechargeable cell or the minimum forward bias voltage V fb of the electronic components of the converter 750 in the case of the primary cell. To the extent that the optimum discharge depth of the cell or the minimum switching voltage V fb of the DC voltage converter 750 is lower than the switching voltage of the electronic device that the battery 710 supplies power, the controller 740 will also increase the battery life 710 by discharging the battery 710 for The voltage limits of the electronic device's disconnection, by maintaining the output voltage at terminals 720 and 722 of the container 712 is higher than the electronic device's cut-off voltage.

In one preferred embodiment of the present invention, as shown in FIG. 7, a DC voltage converter 750 that operates in a continuous mode can be a voltage-down converter that lowers the voltage of the cell 730 to the output voltage of the container 712. In one embodiment, the sub-controller 702 разрядки, который включает в себя преобразователь с понижением напряжения, преобразователь понижает напряжение первого типа гальванического элемента 730 до выходного напряжения контейнера 712, которое равняется приблизительно номинальному уровню напряжения второго типа гальванического элемента, так что батарея, содержащая первый тип гальванического элемента 730, оказывается взаимозаменяемой с батареей, содержащей второй тип гальванического элемента. Например, гальванический элемент, имеющий более высокое номинальное напряжение, чем стандартный элемент на 1,5 В, можно использовать в комбинации с понижающим преобразователем, который работает непрерывно, чтобы обеспечить элемент, являющийся взаимозаменяемым со стандартным элементом, без необходимости химического изменения гальванического элемента. Этот вариант осуществления обеспечивает возможность взаимозаменяемости между различными типами гальванических элементов в большей степени, чем иначе было бы возможно без химического изменения конструкции самого гальванического элемента и уменьшения аккумулирования химической энергии элемента.

In FIG. 8, for example, the DC voltage converter 850 is electrically connected between the positive 832 and negative 834 electrodes of the electrochemical cell 830 and the positive 820 and negative 822 terminals of the container 812. The converter controller 852 is electrically connected between the positive 832 and the negative 834 electrodes of the electrochemical cell 830 and Positive 820 and negative 822 of the container 812. In this example, the converter controller 852 acts as a switch that either directly connects the cell 830 to the output terminals 820 and 822 of the container 812, or connects the DC voltage converter 850 between the cell 830 and the output terminals 820 and 822 of the container 812. The converter controller 852 continuously reads the output voltage and compares it with one or more threshold voltages generated within. If the output voltage of the container 812 falls below the threshold voltage level or, for example, is outside the required range of threshold voltages, the converter controller 852 "turns on" the DC voltage converter 850 via an electrical or preferably electronic method, connects the constant voltage converter 850 between the electrochemical cell 830 and the output terminals 820 and 822 of the container 812. The threshold voltage is preferably in the range from approximately the nominal voltage of the electrochemical cell 830 to approximately the highest trip voltage of the class of electronic devices for which the battery is designed. Alternatively, the converter controller 852 can continuously read the voltage of the electrochemical cell 830 and compare this voltage with a threshold voltage to control the operation of the DC voltage converter 850.

In the case of a rechargeable battery, the converter regulator 852 preferably disconnects the electrochemical cell 830 from the output terminals 820 and 822 of the container 812 when the cell voltage reaches approximately the optimum discharge depth of the electrochemical cell 830. This provides a maximum battery life in terms of the number of charge cycles in which each discharge cycle Has an optimized battery life. Thus, the battery life can be extended.

The discharge sub-controller 902 of FIG. 9 includes the elements of the discharge sub-controller 8 shown in FIG. 8, but further includes a ground bias circuit 980 electrically connected between the electrodes 932 and 934 of the electrochemical cell 930 and the DC voltage converter 950, the converter controller 952, and Output terminals 920 and 922 of container 912. Grounding bias circuit 980 provides a negative bias voltage level V nb for constant voltage converter 950 and negative output terminal 922 of container 912. This increases the voltage applied to DC voltage converter 950 from element voltage to voltage level Element plus the absolute value of the voltage level V nb with negative bias. This enables the transducer 950 to operate at an effective voltage level until the actual voltage of the element falls to a voltage level below the minimum forward bias voltage required to drive the bias ground circuit 980. Thus, the transducer 950 can more efficiently derive a higher current level from the cell 930 than could be performed only at the voltage of the electrochemical cell 930 driving the transducer 950. In a preferred embodiment, the discharge sub-controller 902 for the battery 910 of the present invention, Having a cell with a nominal voltage of approximately 1.5 V, the negative bias voltage V nb preferably varies between about 0 V and about 1 V. More preferably, the negative bias voltage V nb is approximately equal to 0.5 V at the most preferred Value of 0.4 V. Therefore, the grounding bias circuit 980 allows the converter to more deeply discharge the electrochemical cell 930 and increase the efficiency of the converter 950 with respect to extracting the current from the electrochemical cell 930 when the cell voltage drops below about 1 V in the case of a cell , Having a nominal voltage of approximately 1.5 V.

9A shows one exemplary embodiment of a charge supercharger 988 that can be used as a ground bias circuit 980 in a battery 910 of the present invention. In this embodiment, when the switches S 1 and S 3 are closed and S 2 and S 4 are open, the voltage of the cell 930 charges the capacitor C a . Then, when the switches S 1 and S 3 are opened and S 2 and S 4 are closed, the charge on the capacitor C a is inverted and transmitted to the capacitor C b , which provides an inverted output voltage with respect to the voltage of the cell 930. Alternatively, shown in FIG. .9A, the charge supercharger 988 can be replaced by any suitable charging circuit known in the art.

In a preferred embodiment of the present invention, the bias ground circuit 980 includes a charge pump circuit 986. The supercharger circuit 986 is shown in FIG. 9B and includes a clock generator 987 and one or more blowers 988. In the preferred embodiment of the charge pump circuit 986, for example, a charge pump includes a two-level configuration comprising four mini Supercharger 989 and one main supercharger 990. However, any number of mini-blowers 989 can be used. One preferred embodiment of the charge pump circuit 986, for example, includes twelve minichargers 989 and one main supercharger. The mini-blowers 989 and the main blower 990 of this embodiment are driven by four different control signals 991a, 991b, 991c and 991d with different phases generated by the clock generator 987, each of which has the same frequency but are phase-shifted relative to each other. The control signals 991a-991d, for example, can be phase-shifted by ninety degrees relative to each other. In this embodiment, each of the mini-blowers 989 provides an inverted output voltage of the control signals 991a-991d that generate the clock generator. The main blower 990 sums the output signals of the plurality of mini blowers 989 and provides an output for the charge pump circuit 986 which has the same voltage level as the individual output voltages of the minichargers 989 but has a higher current level which is the total current value , Supplied by all twelve mini-blowers 989. This output signal provides a virtual ground for the DC voltage converter 950 and the output of the negative terminal 922 of the container 912.

In a further aspect of the invention, the charge pump circuit further includes a charge pump controller 992 that includes a charge pump circuit 986 only when the cell voltage drops to a predetermined voltage level to minimize losses associated with the charge pump circuit 986. The predetermined voltage for the charge pump controller 992, for example, may range from approximately the nominal voltage of the electrochemical cell 930 to approximately the highest voltage of the tripping of a group of electronic devices for which the battery 910 is designed to power. The predetermined voltage is more preferably approximately greater than 0 , 1 V above the electronic device's cut-off voltage at the most preferred level, approximately 0.05 V greater than the trip voltage. Alternatively, the charge pump circuit 986 can be controlled by the same control signal that includes the DC voltage converter 950 so that the charge pump circuit 986 functions only when the converter 950 is operating.

In addition, both the constant voltage converter 950 and the charge pump circuit 986 in the battery having the rechargeable cell are preferably turned off when the cell voltage drops to approximately the optimum discharge depth. This provides an opportunity to optimally discharge the rechargeable cell to ensure the maximum number and efficiency of charge cycles for this cell.

Further, when the bias grounding circuit 980 is turned off, the virtual ground which is connected to the output negative terminal 922 of the container 912 is preferably reduced to the voltage level of the negative electrode 934 of the cell 930. Thus, when the bias ground circuit 980 does not work, the battery operates in a standard configuration Grounding provided by the negative electrode 934 of the electrochemical cell 930.

Alternatively, the ground bias circuit 980 may comprise a second DC voltage converter such as a voltage boost-up converter, a Cuk converter, or a linear controller. In addition, the DC voltage converter 950 and the bias ground path 980 can be combined and replaced by one converter such as a voltage boost-up converter, a push-pull converter or a back-up converter that shifts the positive output voltage upward and the negative downward bias.

FIG. 10 shows yet another embodiment of a discharge sub-controller circuit 1002 of the present invention. In this embodiment, the DC voltage converter 1050 is able to receive a correction control signal from an external source such as the phase shift circuit 1062. Как описано выше относительно фиг.7, в преобразователе 1050 постоянного напряжения используется схема управления типа широтно-импульсного модулятора для управления рабочими параметрами преобразователя 1050. В этом варианте осуществления схема 1002 подрегулятора разрядки включает в себя такие же элементы, как показанная на фиг.9 схема 902 подрегулятора разрядки, но дополнительно содержит цепь 1062 считывания фазового сдвига, которая измеряет мгновенный сдвиг фаз между составляющими переменного тока напряжения элемента на электроде 1032 и тока, поступающего из гальванического элемента 1030, измеряемого на резисторе R с считывания тока. Преобразователь 1050 постоянного напряжения использует этот сигнал в сочетании с другими генерируемыми внутри или с внешней стороны управляющими сигналами для формирования рабочего цикла.

Подрегулятор 1102 разрядки показанного на фиг.11 варианта осуществления может включать в себя такие же элементы, как подрегулятор 1002 разрядки, показанный на фиг.10, но дополнительно содержит схему 1182 аварийного отключения, электрически соединенную с обеими сторонами резистора R с считывания тока и с отрицательной клеммой 1122 гальванического элемента 1130 и далее соединенную с регулятором 1152 преобразователя. Схема 1182 аварийного отключения может подавать сигнал в регулятор 1152 преобразователя в ответ на одно или более связанных с надежностью состояний, требующих отсоединения гальванического элемента (элементов) 1130 от выходных клемм 1120 и 1122 контейнера 1112 с целью защиты потребителя, электрического или электронного устройства, использующего батарею 1110, или самого гальванического элемента 1130. Например, в случае короткого замыкания или обратной полярности схема 1182 аварийного отключения подает сигнал в регулятор 1152 преобразователя для отсоединения электродов 1132 и 1134 гальванического элемента 1030 от выходных клемм 1120 и 1122 контейнера 1112. Кроме того, схема 1182 аварийного отключения и может обеспечивать индикацию конца цикла разрядки гальванического элемента 1130 для регулятора 1152 преобразователя посредством считывания напряжения и/или внутреннего полного сопротивления гальванического элемента 1130. Например, подрегулятор 1102 разрядки может линейно понижать ток, когда остающаяся емкость гальванического элемента 1130 падает до заранее определенного уровня, периодически отсоединять электроды 1132 и 1134 гальванического элемента 1130 от выходных клемм 1120 и 1122 на небольшой промежуток времени и вновь подсоединять, когда остающаяся емкость гальванического элемента 1130 достигает заранее определенной величины, или обеспечивать некоторую другую визуальную, слышимую или машиносчитываемую индикацию о том, что батарея находится на грани отключения. Отдельно схема 1182 аварийного отключения и может использоваться для обеспечения режима обхода регулятора, если цепь 1183 считывания тока указывает, что номинал установившегося тока выше, чем может поддерживать регулятор 1152. Если этот ток находится в пределах запаса надежности элемента 1130, схема 1182 аварийного отключения может посылать сигнал в регулятор 1152 преобразователя для подсоединения электродов 1132 и 1134 гальванического элемента 1130 непосредственно к выходным клеммам 1120 и 1122 в обход преобразователя 1150. В конце цикла разрядки схема аварийного отключения может и посылать сигнал в регулятор 1154 преобразователя для отсоединения гальванического элемента 1130 от выходных клемм 1120 и 1122 контейнера 1112 и/или для короткого замыкания выходных клемм 1120 и 1122, с целью предотвращения потребления тока разряженным гальваническим элементом 1130 от других элементов, соединенных последовательно с разряженным гальваническим элементом 1130.

Предпочтительный подрегулятор 1202 разрядки, который показан на фиг.12, включает в себя преобразователь 1250 постоянного напряжения, имеющий синхронный выпрямитель 1274, который может электронным образом подсоединять положительный электрод 1232 к положительной клемме 1220 контейнера 1212 и отсоединять его. Выключатель синхронного выпрямителя 1274 устраняет необходимость в дополнительном выключателе типа регулятора 852 преобразователя на прямом электрическом пути между положительным 1232 или отрицательным 1234 электродами гальванического элемента 1230 и выходными клеммами 1220 и 1222 контейнера. Дополнительно, синхронный выпрямитель 1274 увеличивает эффективность преобразователя 1250 постоянного напряжения путем снижения внутренних потерь. Регулятор 1252 преобразователя данного варианта осуществления и обеспечивает дополнительные входные сигналы для управления преобразователем 1250 постоянного напряжения. Например, в показанном на фиг.12 варианте осуществления регулятор 1252 преобразователя контролирует внутреннее состояние гальванического элемента посредством датчиков (не показанных), типа датчиков температуры, давления и концентрации водорода и кислорода, в дополнение к описанным ранее относительно фиг.10 измерениям фазового сдвига.

Фиг.7-12 изображают постепенно все более усложняющиеся конструкции схем по настоящему изобретению. Они приведены в этом порядке для того, чтобы обеспечить последовательное описание различных элементов, которые могут быть включены в схему подрегулятора разрядки в дополнение к преобразователю постоянного напряжения, который является центральным элементом соответствующего настоящему изобретению регулятора. Предполагается, что порядок представления не предназначен для того, чтобы элементы, вводимые после в схемах, объединяющих множество различных элементов, имели все особенности, описанные относительно предыдущих чертежей, чтобы не выходить за рамки объема притязания настоящего изобретения. Схему аварийного отключения, схему индикатора зарядки, цепь считывания фазы и/или заземляющую цепь смещения, например, можно использовать в сочетании с цепями, показанными на фиг.6-11, без регулятора преобразователя или других элементов, показанных на чертежах, которые изображают эти элементы.

Предпочтительный вариант осуществления интегральной схемы 1340 регулятора для использования в батарее 1310 по настоящему изобретению включает в себя преобразователь 1350 постоянного напряжения и регулятор 1352 преобразователя и изображен на фиг.13. Преобразователь 1350 предпочтительно является высокоэффективным и преобразователем средней мощности, который может функционировать ниже порогового напряжения большинства электронных устройств. Подрегулятор 1302 разрядки предпочтительно включает в себя нагнетатель заряда типа показанного на фиг.9В, чтобы обеспечить виртуальное заземление, которое имеет потенциал ниже потенциала отрицательного электрода 1334 гальванического элемента 1330, для преобразователя 1350 постоянного напряжения и выходной клеммы 1322 контейнера 1312. Виртуальное заземление обеспечивает увеличенный перепад напряжения, доступный для возбуждения преобразователя 1350 постоянного напряжения, и позволяет преобразователю 1350 более эффективно выводить более высокий уровень тока из гальванического элемента 1330, чем было бы можно в случае приведения в действие преобразователя только напряжением элемента.

В этом варианте осуществления в регуляторе 1352 преобразователя предпочтительно используется схема управления широтно-импульсной и фазоимпульсной модуляции. Цепь 1362 считывания фазового сдвига измеряет напряжение элемента и ток, поступающий из гальванического элемента 1330 на положительном 1332 и отрицательном 1334 электродах гальванического элемента 1330, и мгновенный и/или непрерывный фазовый сдвиг между напряжением и током. Этот фазовый сдвиг определяет внутреннее полное сопротивление гальванического элемента 1330, которое является функцией зарядной емкости гальванического элемента 1330. В щелочной батарее, например, после разрядки гальванического элемента 1330 приблизительно на 50%, которая определяется падением напряжения в режиме короткого замыкания элемента, увеличивающееся внутреннее полное сопротивление указывает на остающуюся емкость гальванического элемента 1330. Цепь 1362 считывания фазового сдвига обеспечивает эти сигналы для регулятора 1371 с линейной фазовой характеристикой. Затем регулятор 1371 с линейной фазовой характеристикой обеспечивает напряжение V s , считываемое цепью 1362 считывания фазового сдвига, и управляющий сигнал V(psi) выходного напряжения, который является линейно пропорциональным фазовому сдвигу для импульсного модулятора 1376, который использует комбинацию схем управления широтно-импульсной модуляции и фазоимпульсной модуляции. Импульсный модулятор 1376 и принимает падение напряжения на резисторе R s в качестве сигнала регулирования напряжения.

Импульсный модулятор 1376 использует сигналы регулирования напряжения в сочетании для возбуждения преобразователя 1350 постоянного напряжения. Когда напряжение V s выше заранее определенного уровня порогового напряжения, импульсный модулятор 1376 сохраняет полевой транзистор со структурой металл-оксид-полупроводник (МОП-транзистор) М 3 в запертом состоянии, а МОП-транзистор М 4 в открытом состоянии. Таким образом, путь тока от гальванического элемента 1330 к нагрузке поддерживается через МОП-транзистор М 3 . Кроме этого, потери, связанные с преобразователем 1350 постоянного напряжения и регулятором 1352 преобразователя, минимизированы, поскольку рабочий цикл эффективно сохраняется на нулевом проценте. В этом случае потери постоянного тока запертого МОП-транзистора М 3 и резистора R s чрезвычайно низкие. Резистор R s , например, имеет номинальное значение предпочтительно в диапазоне от приблизительно 0,01 до приблизительно 0,1 Ом.

Однако, когда напряжение V s ниже заранее определенного уровня порогового напряжения, импульсный модулятор 1376 включается и модулирует рабочий цикл преобразователя 1350 постоянного напряжения на основании сочетания сигналов регулирования напряжения. Амплитуда V s действует как первичный управляющий сигнал, который управляет рабочим циклом. Падение напряжения на резисторе R s считывания тока или датчике тока, которое является функцией выходного тока, действует как второй управляющий сигнал. Наконец, сигнал V(psi), создаваемый регулятором 1371 с линейной фазовой характеристикой, который является линейно пропорциональным сдвигу фаз между составляющими переменного тока напряжения элемента и тока, поступающего из гальванического элемента 1330, является третьим управляющим сигналом. В частности, сигнал V(psi) используется для изменения рабочего цикла в ответ на изменение внутреннего полного сопротивления в течение продолжительности работы батареи, которое воздействует на эффективность преобразователя и продолжительность работы батареи. Импульсный модулятор увеличивает рабочий цикл, если мгновенная и/или непрерывная амплитуда V s уменьшается или если падение напряжения на резисторе R s увеличивается, и/или мгновенная и/или непрерывная амплитуда управляющего сигнала V(psi) увеличивается. Участие каждой переменной взвешивается согласно соответствующему алгоритму управления.

Когда импульсный модулятор 1376 включается, его генератор вырабатывает управляющие импульсы волны в виде меандра или последовательности трапецеидальных импульсов, которые предпочтительно имеют рабочий цикл 50% и частоту в диапазоне от приблизительно 40 кГц до приблизительно 1 МГц, более предпочтительно в диапазоне от приблизительно 40 кГц до приблизительно 600 кГц при наиболее предпочтительной частоте порядка 600 кГц. Импульсный модулятор 1376 изменяет рабочий цикл выходного управляющего сигнала для МОП-транзисторов М 3 и М 4 , используя соответствующий алгоритм управления. В более общем случае алгоритм управления приводит в действие транзисторы М 3 и М 4 с одним и тем же рабочим циклом, но в противофазе. МОП-транзисторы М 3 и М 4 предпочтительно являются комплементарными мощными транзисторами, в которых М 3 является предпочтительно МОП-транзистором с каналом N-типа, а М 4 - предпочтительно МОП-транзистором с каналом Р-типа. В сущности, конфигурация всего преобразователя 1350 постоянного напряжения представляет собой повышающий преобразователь постоянного напряжения с синхронизированным выпрямителем на выходе. Кроме того, преобразователь 1350 минимизирует потери переменного и постоянного тока, используя МОП-транзистор М 3 вместо несинхронного диода Шотки. М 3 и мощный МОП-транзистор М 4 приводят в действие отдельные управляющие сигналы. Изменение фазы и/или рабочего цикла между управляющими сигналами М 3 и М 4 изменяет выходное напряжение на клеммах 1320 и 1322 контейнера 1312.

Импульсный модулятор 1376 может управлять МОП-транзисторами М 3 и М 4 на основании одного или больше сигналов регулирования напряжения типа напряжения V s , падения напряжения на резисторе R s или внутреннего полного сопротивления гальванического элемента 1330. Если потребление тока нагрузки низкое, например, импульсный модулятор 1376 формирует рабочий цикл преобразователя 1350 постоянного напряжения близко к нулевому проценту. Однако, если потребление тока нагрузки высокое, импульсный модулятор 1376 формирует рабочий цикл преобразователя постоянного напряжения 1350 близко к 100%. Поскольку потребление тока нагрузки изменяется между этими двумя конечными точками, импульсный модулятор 1376 изменяет рабочий цикл преобразователя постоянного напряжения так, чтобы обеспечить ток, требуемый нагрузкой.

На Фиг.14 приводится сравнение примерных кривых разрядки для батареи В 1 , которая не имеет соответствующего настоящему изобретению регулятора, батареи В 2 по настоящему изобретению, имеющей подрегулятор разрядки, в котором преобразователь работает в непрерывном режиме, и для батареи В 3 по настоящему изобретению, имеющей подрегулятор разрядки, в котором преобразователь включается выше напряжения отключения батареи для обычного электронного устройства, для которого разработана эта батарея. Как показано на фиг.14, батарея В 1 , которая не имеет регулятор по настоящему изобретению, будет отказывать в электронном устройстве, имеющем напряжение отключения V c , в момент времени t 1 . Однако подрегулятор разрядки батареи В 2 непрерывно повышает выходное напряжение батареи до уровня напряжения V 2 на протяжении всей продолжительности работы батареи. Когда напряжение гальванического элемента батареи В 2 падает до уровня напряжения V d минимального рабочего напряжения подрегулятора разрядки, подрегулятор батареи В 2 выключается, и выходное напряжение батареи падает до нуля в момент времени t 2 , заканчивая эффективную продолжительность работы батареи В 2 . Как показано на графике фиг.14, продление эффективной продолжительности работы батареи В 2 , имеющей подрегулятор, в котором преобразователь работает в непрерывном режиме, составляет время t 2 – t 1 .

Однако регулятор батареи В 3 не начинает повышать выходное напряжение батареи, пока напряжение гальванического элемента не достигает заранее определенного уровня напряжения V p3 . Заранее определенный уровень напряжения V p3 предпочтительно находится в диапазоне между номинальным уровнем напряжения гальванического элемента и самым высоким напряжением отключения того класса электронных устройств, для которого предназначена батарея. Более предпочтительно, заранее определенный уровень напряжения V p3 составляет приблизительно на 0,2 В больше, чем самое высокое напряжение отключения V c того класса электронных устройств, для которого предназначена батарея. Еще более предпочтительно, заранее определенный уровень напряжения V p3 составляет приблизительно на 0,15 В больше, чем самое высокое напряжение отключения V c того класса электронных устройств, для которого предназначена батарея. Однако, еще более предпочтительно, заранее определенный уровень напряжения V p3 составляет приблизительно на 0,1 В больше, чем самое высокое напряжение отключения V c того класса электронных устройств, для которого предназначена батарея, при наиболее предпочтительном уровне приблизительно на 0,05 В больше, чем V c . Когда напряжение на выводах элемента достигает заранее определенного уровня напряжения V p3 , преобразователь батареи В 3 начинает повышать или стабилизировать выходное напряжение до уровня V c + V. Уровень напряжения V показан на фиг.14 и представляет разность напряжений между повышенным выходным напряжением батареи В 3 и напряжением отключения V c . Уровень напряжения V предпочтительно находится в диапазоне от приблизительно 0 В до приблизительно 0,4 В при наиболее предпочтительном уровне приблизительно 0,2 В. Затем батарея В 3 продолжает обеспечивать выходной сигнал, пока напряжение гальванического элемента не упадет до уровня напряжения V d , минимального рабочего напряжения преобразователя, когда регулятор батареи В 3 выключается. В это время выходное напряжение батареи падает до нуля в момент времени t 3 , оканчивая эффективную продолжительность работы батареи В 3 . Как показано на графике фиг.14, продление эффективной продолжительности работы батареи В 3 по сравнению с батареей В 1 , которая не имеет преобразователя по настоящему изобретению, составляет t 3 -t 1 .

На фиг.14 и показано, что батарея В 3 продолжает работать дольше батареи В 2 , когда они подсоединены к одному и тому же электронному устройству. Поскольку преобразователь батареи В 2 работает непрерывно, внутренние потери преобразователя потребляют некоторую часть емкости энергии гальванического элемента батареи В 2 , и, следовательно, напряжение элемента батареи В 2 достигнет минимального рабочего напряжения преобразователя V d за более короткое время по сравнению с батареей В 3 , в которой регулятор функционирует только в период цикла разрядки. Таким образом, оптимизация выбора заранее определенного напряжения V p3 батареи В 3 как можно ближе к напряжению отключения электронного устройства, которое она снабжает энергией, приведет к наиболее эффективному использованию гальванического элемента и приведет к большему продлению продолжительности работы батареи. Таким образом, заранее определенное напряжение V p3 батареи В 3 предпочтительно равно или немного большее напряжения отключения электронного или электрического устройства, для снабжения электроэнергией которого она предназначена. Например, заранее определенное напряжение V p3 предпочтительно может быть приблизительно на 0,2 В больше, чем напряжение отключения. Более предпочтительно, заранее определенное напряжение V p3 может быть предпочтительно приблизительно на 0,15 В больше, чем напряжение отключения. Еще более предпочтительно, заранее определенное напряжение V p3 может быть предпочтительно приблизительно на 0,1 В больше, чем напряжение отключения, при наиболее предпочтительном уровне приблизительно на 0,05 В больше, чем напряжение отключения.

Однако, если батарея разработана как универсальная батарея для разнообразных электронных устройств, то заранее определенное напряжение V p3 предпочтительно выбирают равным или немного большим, чем самое высокое напряжение отключения этой группы электронных устройств. Например, заранее определенное напряжение V p3 может быть предпочтительно приблизительно на 0,2 В больше, чем самое высокое напряжение отключения этой группы электронных устройств. Более предпочтительно, заранее определенное напряжение V p3 может быть предпочтительно приблизительно на 0,15 В больше, чем самое высокое напряжение отключения этой группы электронных устройств. Еще более предпочтительно, заранее определенное напряжение V p3 может быть предпочтительно приблизительно на 0,1 В больше, чем самое высокое напряжение отключения этой группы электронных устройств при наиболее предпочтительном уровне приблизительно на 0,05 В больше, чем самое высокое напряжение отключения этой группы электронных устройств.

Графики фиг.14 и изображают более низкое минимальное рабочее напряжение преобразователя V d , большее продление продолжительности работы по сравнению с батареей В 1 , которая не имеет регулятора по настоящему изобретению. Кроме того, чем больше разность между напряжением V c отключения электронного устройства и минимальным рабочим напряжением V d преобразователя, тем большее регулятор по настоящему изобретению обеспечит продление продолжительности работы батареи благодаря повышению напряжения гальванического элемента.

Далее, на фиг.14 изображено, что отключение устройства больше не является фактором ограничения разрядки первичного или перезаряжаемого гальванического элемента. Пока регулятор может поддерживать выходное напряжение батареи выше напряжения отключения устройства, гальванический элемент (элементы) батареи может продолжать разряжаться. В первичной батарее это обеспечивает возможность разряжаться элементу (элементам) по возможности полнее, в зависимости от минимального рабочего напряжения преобразователя. Однако в перезаряжаемой батарее настоящее изобретение обеспечивает возможность оптимальной разрядки, которая увеличивает срок службы перезаряжаемой батареи, независимо от напряжения отключения устройства, пока преобразователь способен функционировать от напряжения на выводах элемента, меньшего или равного оптимальной глубине разрядки перезаряжаемого гальванического элемента.

ПОДРЕГУЛЯТОР ЗАРЯДКИ

Подрегулятор 104 зарядки и может продлевать циклическую долговечность перезаряжаемой батареи по настоящему изобретению. Подрегулятор может продлевать циклическую долговечность перезаряжаемой батареи путем отдельного управления последовательностью зарядки для каждого отдельного гальванического элемента. Таким образом, подрегулятор зарядки может оптимизировать зарядку каждого элемента на основании фактической обратной связи от этого конкретного элемента, чтобы довести до максимума количество и эффективность каждого цикла зарядки и разрядки. Подрегулятор зарядки, например, может управлять зарядкой каждого элемента путем непосредственного контроля напряжения элемента и/или внутреннего полного сопротивления каждого элемента. Это обеспечивает возможность подрегулятору управлять циклом зарядки каждого отдельного гальванического элемента в множестве одноэлементных батарей или одной или больше многоэлементных батарей.

Подрегулятор 104 зарядки и может увеличивать продолжительность работы перезаряжаемой батареи, которая предпочтительно разряжается не глубоко, типа свинцово-кислотной батареи посредством зарядки гальванического элемента (элементов) в течение "времени выключения" цикла разрядки, то есть когда гальванический элемент находится не в режиме разрядки. Например, регулятор может позволять подрегулятору зарядки заряжать любой один или больше из отдельного элемента (элементов) в течение "времени выключения" разрядки для этого элемента (элементов). Если "время выключения" достаточно длительное относительно "времени включения" разрядки, то есть когда конкретный гальванический элемент активно разряжается, подрегулятор зарядки может быть способным поддерживать элемент в состоянии, по меньшей мере близком к состоянию полной заряженности. Если рабочий цикл достаточно высок и устройство работает в течение достаточной продолжительности времени, так что подрегулятор зарядки не способен поддерживать заряд гальванического элемента выше заранее определенного уровня напряжения или ниже конкретного уровня полного сопротивления, который соответствует максимуму требуемой глубины разрядки этого типа или этого конкретного гальванического элемента, то подрегулятор разрядки может заканчивать цикл разрядки батареи, когда перезаряжаемый гальванический элемент (элементы) достигает максимума требуемой глубины разрядки. Подрегулятор зарядки может и предотвращать чрезмерную зарядку только путем зарядки элемента, когда напряжение элемента ниже некоторого заранее определенного уровня напряжения, типа номинального напряжения элемента, с помощью любого другого способа определения окончания цикла зарядки, описанного в этой заявке, или любого другого способа, известного в технике. Таким образом, регулятор может оптимизировать срок службы перезаряжаемых гальванических элементов, не позволяя элементу разрядиться за пределы оптимальной глубины разрядки во время цикла разрядки и оптимизируя последовательность зарядки во время цикла зарядки.

Альтернативные источники питания для зарядного цикла могут включать в себя внешний источник питания типа сетевого шнура устройства или внутренний источник питания типа другого гальванического элемента в устройстве или скомпонованного с перезаряжаемым гальваническим элементом в гибридной батарее. Первичный элемент, например, можно упаковывать в устройстве или, наряду с перезаряжаемым гальваническим элементом, в гибридной батарее. Воздухо-металлический элемент, типа воздухо-цинкового элемента, который имеет высокую плотность энергии, но способен обеспечить только относительно низкие уровни тока, обеспечивает особенно выгодный альтернативный источник питания, который можно использовать для зарядки перезаряжаемого гальванического элемента. В качестве альтернативы, чтобы обеспечить источник зарядки для перезаряжаемого гальванического элемента, в гибридную батарею можно включить альтернативный источник питания типа топливного элемента.

Кроме того, для зарядки батареи по настоящему изобретению подрегулятор зарядки и допускает использование либо контактной системы зарядки, либо бесконтактной изолированной системы зарядки.

A preferred embodiment of the battery of the present invention and may include an indication of a full charge for the user. For example, the charge sub-controller may provide a visible or audible indication to the user that the battery is fully charged. Alternatively, the sub-controller may provide an indication read by the charger system or device so that the charging system or device can, respectively, warn the user.

FIG. 15 is a block diagram of a battery of the present invention, which includes a charging sub-controller circuit 1504. FIG. The charging sub-controller circuit 1504 is preferably integrated into the battery 1510 and is responsible for reliably and efficiently controlling the incoming power supply signal from an external source or charging circuit in order to optimize the charging cycle of the rechargeable cell 1530. The charge-sub-controller circuit 1504 controls the incoming power supply signal from an external charging source , Based on the input voltage control signals obtained from the sensor circuit 105 and / or feedback from its own internal reading circuits. For example, charge controller circuit 1504 may use a voltage control signal V (psi) that determines the internal impedance of the electrochemical cell 1530. This control signal is generated by the linear phase characteristic controller 1571 and is described with reference to FIG. Alternatively, the charge sub-controller may control the charging of the cell 1530 by the element voltage or the charging current, or by combining two or more internal impedances, the cell voltage and the charging current. In addition, for optimal charging of the electrochemical cell 1530, the charge controller can be utilized by physical conditions measured inside the container 1512 of the battery 1510, such as hydrogen concentration, oxygen concentration, temperature and / or pressure.

When the voltage at the output terminals 1520 and 1522 is higher than the voltage of the cell 1530, the pulse modulator 1576 of the discharge sub-controller 1502 locks the N-type MOS transistor M 3 and opens the MOSFET M 4 with the P-type channel. The MOS transistor M 3 creates a current path from the output terminals 1520 and 1522 to charge the cell 1530, and the MOSFET M 4 prevents a short circuit between the output terminals 1520 and 1522. The pulse modulator 1576 and can turn off the bias ground circuit 1580 by sending a control signal Voltage to the clock generator 1587 of the grounding circuit 1580 of the bias. In the example of a charge pump, for example, the clock generator 987 opens the switches S1 and S2 and closes the switches S3 and S4, reducing the virtual ground output to the potential of the negative electrode 934 of the electrochemical cell 930.

Alternatively, if the bias ground circuit 1580 includes an internal regulator such as a charge pump controller 1592 that operates as described with respect to the charge pump regulator 992 in FIG. 9B, the internal controller can directly compare the voltage of the output terminals 1520 and 1522 with the voltage of the cell 1530 And turn off the bias ground circuit 1580 if the voltage at terminals 1520 and 1522 is greater than the voltage of the electrochemical cell 1530, directly controlling the clock 1587. This reduces the virtual ground output voltage to the potential of the negative electrode 1534 of the cell 1530.

In a preferred embodiment of the present invention, the charge-sub-driver circuit 1504 uses the internal impedance information to determine the most efficient AC signal profile, including amplitude, frequency, slice and edge, and so on. Thus, the sub-controller minimizes internal dynamic and static charging losses of the cell and provides control for the fastest possible charge rate for a particular cell. In addition, sensors of physical state such as hydrogen and oxygen concentration, temperature, pressure, etc. Can provide an opportunity to further optimize charging conditions.

When the charging sub-controller circuit 1504 decides that the cell is fully charged, the charge sub-controller opens the N-type MOS transistor M 3 . Это отсоединяет гальванический элемент 1530 от клемм 1520 и 1522 контейнера 1512 и, вследствие этого, от внешнего источника или схемы зарядки.

Использование внутреннего полного сопротивления для управления зарядкой гальванического элемента 1530 обеспечивает оптимизацию зарядки на основании истинных состояний ионного и электрического полного сопротивления гальванического элемента 1530. Благодаря размещению подрегулятора 1504 зарядки в каждом контейнере 1512, обеспечивают большее управление отдельных гальванических элементов 1530 множества одноэлементных батарей или многоэлементной батареи, поскольку подрегуляторы отдельно управляют зарядкой каждого элемента. Элементы 1530 можно заряжать в последовательной и/или параллельной конфигурации с другими гальваническими элементами 1530. Если элементы заряжаются последовательно, подрегулятор 1504 зарядки может включать в себя путь высокого полного сопротивления между клеммами так, чтобы, когда гальванический элемент 1530 полностью зарядится, подрегулятор 1504 мог шунтировать зарядный ток на другие элементы, соединенные последовательно с этим элементом 1530. Однако если элементы соединены параллельно, подрегулятор 1504 зарядки может отсоединять гальванический элемент от зарядного тока. Размещение регулятора в каждом гальваническом элементе многоэлементной батареи обеспечивает возможность заряжаться каждому элементу одним и тем же зарядным током, который управляется отдельными регуляторами в каждом элементе с целью оптимальной зарядки этого элемента, независимо от электрохимии этого элемента. Этот подрегулятор зарядки и может заряжать множество элементов гибридной батареи, даже когда элементы имеют различные номинальные напряжения.

FIG. 16 shows one embodiment of a configuration of a charging sub-controller circuit 1504 that can be used in a battery of the present invention, as shown in FIG. In this embodiment, the charging sub-charger circuit 1604 includes a universal charger circuit 1677, a burst circuit 1678, and a charge state control mechanism 1679. The charge state control mechanism 1679 utilizes a burst circuit 1678 to create a test current I s and a test voltage V s at the electrodes 1532 and 1534 of the electrochemical cell 1530. As described with respect to FIG. 13, the linear phase response regulator 1571 detects a phase shift between the test current I s And the test voltage V s . The burst circuit 1678 preferably includes a burst driver and 1668 MOS transistor M 1 with an N-type channel. The burst generator 1668 generates a high frequency pulse signal that drives the gate of the MOSFET M 1 . The test current I s flows through the MOS transistor M l , and the linear phase response regulator 1571 detects a phase shift angle between the test current I s and the test voltage V s . The linear phase response controller 1571 outputs a voltage control signal V (psi) which is linearly proportional to the phase shift between the AC components of the cell voltage and the current output from the cell 1530 to the charge state control mechanism 1679. The charge state control mechanism 1679 uses this control signal from the linear phase response controller 1571 to control the AC charging signal profile. When the electrochemical cell 1530 is fully charged, the pulse modulator 1576 disconnects the MOSFET M 3 , which in turn disconnects the cell 1530 from the terminals 1520 and 1522 of the container 1512.

17, an alternative embodiment of the charge-sub-charger circuit shown in FIG. 15 is shown, which allows for the isolated charging of the cell 1530 without any mechanical contact between the external circuit of the charger and the battery 1510 of the present invention. In this embodiment, the charging controller circuit 1704 includes an inductor that acts as a secondary winding of the transformer to charge the cell 1530. The external charging source includes a primary winding of the transformer that can be connected wirelessly through air to the secondary winding of the sub-controller circuit 1704 Charging. The battery of the present invention, for example, may comprise a printed inductor on the label of the battery 1510 or may be contained within the container or battery to form a secondary winding of the charging transformer. The charging circuit of this embodiment preferably operates at a frequency in the range of about 20 kHz to about 100 kHz, more preferably in the range of about 40 kHz to 60 kHz at the most preferred frequency of about 50 kHz. The signal from the external charging source energizes the secondary winding 1798 of the charge controller circuit 1704 via the primary winding of the external charging source. The charge state control mechanism 1794 controls the universal charger circuit 1777 to optimize the charging cycle of the rechargeable cell 1530. If the external charger circuit operates at a frequency of about 50 kHz, the transformer has a sufficient range to provide charging of the cell from about 1 (25.4 Mm) to about 3 inches (76.2 mm) from the battery of the present invention, and can thus provide charging of the cell in place of operation without removing the battery from the electrical or electronic device. This can provide a clear advantage over the batteries that should be removed from the device. The battery in a surgically implanted device, such as an electrostimulator type, can be charged without surgical removal of the battery from the patient.

EMERGENCY DISCONNECTOR

The controller can also perform an emergency shutdown function that disconnects the battery from the terminals of the battery container when one or more safety-related conditions are detected and / or connect the cell directly to the output terminals bypassing the converter if the load required by the load exceeds the capabilities of the converter, but Is still within the operating current range for a particular electrochemical cell. The controller may include an independent emergency shutdown sub-controller that detects dangerous conditions such as short circuit, reverse polarity, overcharge, overcharge, high temperature, pressure or hydrogen concentration and electronically detach the battery from the battery terminals. Alternatively, the disconnect functions of the discharge sub-controller and / or the charge-sub-controller may be implemented, or the controller may include separate readout circuits that provide signals to the discharge sub-controller and / or charge-sub-regulator to disconnect the battery from the battery terminals.

CLAIM

1. A battery comprising a controller, a battery cell disposed in a container having a total internal resistance, a positive electrode, a negative electrode, wherein the voltage in the battery cell is measured between the positive and negative electrodes, a controller electrically connected to said electrodes and container terminals for formation From the voltage of the output voltage element between the positive and negative terminals of the container, and a circuit responsive to a predetermined battery condition configured to disconnect the controller output voltage from the container terminals when a predetermined battery condition is detected which is substantially determined by the total internal resistance of the battery cell .

2. The battery of claim 1, wherein the circuit is part of the regulator and provides disconnection of the controller output voltage from the positive and negative terminals of the container when a predetermined battery condition is detected.

3. The battery according to any one of claims 1 and 2, wherein the circuit comprises a current sensor connected to a battery cell for measuring the cell current, the circuit being sensitive to a predetermined state that is one of the states: short circuit and reverse polarity which Is detected by the current sensor, and disconnects the output voltage of the controller when this predetermined state is detected.

4. The battery according to any one of claims 1 to 3, wherein the circuit provides monitoring in the battery cell for voltage and / or for the total internal resistance, wherein the circuit is sensitive to a predetermined state, which is one of the states: voltage reduction in the cell The battery is below a predetermined voltage level and the total internal resistance is exceeded, and disconnects the output voltage of the controller when this predetermined condition is detected to prevent overcharge of the battery cell.

5. The battery according to any one of claims 1 to 4, wherein the circuit provides monitoring in the battery cell for voltage and is sensitive to a predetermined condition determining a voltage rise of a predetermined level, and disconnects the output voltage of the regulator upon detecting this predetermined state to prevent Excessive charge of the battery cell.

6. The battery according to any one of claims 1 to 5, wherein the circuit provides control of the element beyond the pressure inside the container, wherein the circuit is sensitive to a predetermined condition determining the pressure in the container above the limit pressure and disconnects the output voltage of the regulator upon detection This predetermined state.

7. The battery according to any one of claims 1 to 6, wherein the circuitry monitors the hydrogen concentration within the container, the circuit being sensitive to a predetermined state determining the concentration of hydrogen in the container exceeding the hydrogen limit level and disconnecting the output voltage of the regulator upon detection This predetermined state.

8. The battery according to any one of claims 1 to 7, wherein the circuitry monitors the temperature within the container, the circuit being sensitive to a predetermined condition determining the temperature in the container above the limit temperature and disconnecting the output voltage of the regulator upon detecting this predetermined State.

9. The battery as claimed in any one of claims 1 to 8, wherein the predetermined state is a state in which the required current load applied to the battery exceeds the capabilities of the controller, the circuit being operated upon detaching the output voltage of the regulator from the terminals of the container and providing Connecting the battery cell directly to the terminals of the container to form a voltage corresponding to the voltage of the battery cell on the terminals of the container.

10. Способ продления периода нормальной эксплуатации батареи, по которому обеспечивают батарею, имеющую регулятор, подходящий для использования в батареях, имеющих первичную батарею и вторичную батарею, и содержащую контейнер, имеющий положительную клемму и отрицательную клемму, и элемент батареи, расположенный в контейнере, имеющий полное внутреннее сопротивление, положительный электрод и отрицательный электрод, при этом напряжение в элементе батареи измеряется между положительным и отрицательным электродами, причем регулятор электрически соединяют с упомянутыми электродами элемента батареи и клеммами контейнера для образования из напряжения элемента батареи выходного напряжения между положительной и отрицательной клеммами контейнера, и при обнаружении заранее определенного состояния батареи, которое, по существу, определено полным внутренним сопротивлением элемента батареи, отключают выходное напряжение регулятора от клемм контейнера.

print version
Date of publication 24.03.2007gg