This page has been robot translated, sorry for typos if any. Original content here.

Luminescent lighting of T4, T5 and T8

Technical characteristics, used ballasts, spectral combinations

Aquarium Lighting

Any, even the most primitively organized aquarium, should be considered as an artificial microbiocenosis created by the aquarist himself. Consequently, the aquarist himself is able to manage the energy flows entering the aquarium (light, temperature, water flow, feeding, etc.) to some extent. The task of the aquarist is to balance these flows. You can use the formula:

Proposed energy -> accumulated energy -> allocated energy

It is important to understand that the processes of dissimilation should not prevail over the synthesis processes in both individual species and the species community of the aquarium as a whole. The primary producers in the trophic chain of the aquarium are chemo- and photosynthesizing bacteria, inferior algae and green plants.

So how do you properly illuminate your aquarium? Unfortunately, I still have never seen on sale ready-made aquariums, in which the lighting would have been cleverly thought out. As a rule, they either do not have enough lamps, or worse, the length of the lamps does not correspond to the length of the aquarium. This means that the necessary amount of light energy for further transformation of the plant community will not receive. With an aquarium height of 40-50 cm, the luminous flux should be within 30-50 lumens per liter. And no calculations in watts! Luminescent tubes of the same length have different luminous efficiencies:

  • LB-40 lamp - 2800 lm
  • Hagen Sun Glo - 3100 lm
  • Hagen AquaGlo - 960 lm
  • Sylvania DaylightStar - 3250 lm

A sure sign of correct lighting in the aquarium is when, 3-4 hours after switching on the light, oxygen begins to separate from the intercellular space of plant tissues in the form of optically visible bubbles. By the way, the big misconception is the opinion that the isolation of atomic oxygen is the beginning of photosynthesis. For this it is sufficient that one quantum of light per molecule of chlorophyll. In this case, oxygen, split off from the water molecule during photolysis, diffuses into the water as a by-product. But first, in the first hours after switching on the lighting, the oxygen released dissolves in the water. And only then, when the intercellular fluid is oversaturated, it starts to be released apparently for the eyes. Naturally, this release of oxygen under normal illumination is possible only with a sufficient amount of CO2, an optimal temperature and a balanced micro and macro nutriment. Thus, when calculating lighting, the first thing to do is to calculate the necessary luminous flux in your aquarium.

Now let's talk about the spectral composition of the aquarium lighting. In the light culture of plants, much attention is paid to the spectral composition of the proposed light. The spectral composition affects all processes of vital activity of plant organisms, growth, development, photoperiodism, movement, the formation of pigments, the coloring of plants, etc. One can, as long as you like, talk about the influence of the quality of light in the process of photosynthesis on various biochemical reactions and the orientation of photosynthesis itself, That plants need more orange-red long-wave radiation than blue-violet short-wave radiation. Comparative studies of the intensity of photosynthesis in some plants under illumination below light saturation showed that the intensity of photosynthesis was maximum in red and minimal in the blue and green parts of the spectrum. At light saturation, the maximum photosynthetic rates for rays of different wavelengths were almost identical. When the illumination was aligned by the number of quanta absorbed, the photosynthetic curves for red, blue, and white were the same.

The advice of "advanced" aquarists on the use of only special phytolamps with the predominance of the red component in the spectrum is not entirely correct. Such advice only makes sense if there is a frank lack of coverage. In my aquariums I use combinations of Hagen SunGlo and AquaGlo and Sylvania GroLux, AquaStar and DaylightStar lamps. It is the GroLux lamp that has a well-defined composition with maximum peaks in the blue-violet and orange-red parts of the FAI spectrum (physiologically active radiation). The combination of SunGlo with another and lamps similar in spectral data from GroLux also produced interesting results.

After differential spectrometry, it was found that the absorption bands of the pigment systems of most long-stemmed plants in my aquariums are close to the spectral curves of the GroLux lamp.

In general, gradually for myself, I came to the following conclusion: in a properly organized aquarium with plants, it is worthwhile to use two types of lamps: giving the maximum luminous flux, to reach the norm of 30-50 lm / l and phytolamp with a spectrum of maximum absorption of plant pigment systems. As the first, I prefer Hagen LifeGLO, SunGlo and Sylvania AquaStar, DaylightStar. Second lamps: Hagen AquaGlo and Sylvania GroLux. And here I phray for myself floraGlo - despite the good growth of plants under it, it fairly stimulates the development of algae.

In addition to brightness and spectrum, the third important parameter is the length of the light day. There is a fairly common belief that light inhibits the growth of plants. In fact, light restricts only the phase of cell stretching and accelerates their transition to differentiation. Many aquarists still think that plants grow only in the dark. This is not so, and that's why. The increase in the size of a multicellular plant is due solely to the growth of cells in the stretching phase. And that's just how light just inhibits cell stretching, but not completely. Mitoses of cells occur continuously and also continuously, albeit at different rates, the cell sizes increase.

In a decorative aquarium you need to find a compromise between the desire to observe your aquarium as much as possible and the right rhythm day and night in the life of plants. My aquariums are lit 10-12 hours a day, from 10 to 20-22 hours; The peak of oxygen saturation is 19-21 hours, about 13 mg / l. 100 percent oxygen saturation of water - about 5 hours after switching on the lighting. All in full accordance with the recommendations of Kaspar Horst.

Sufficient light day for most plants in aquariums - 8-10 hours, it is clearly visible on the closure of the apical points of long-stemmed plants.

Technical characteristics of lighting

A picture that shows how much the intensity of light decreases at the bottom of the aqua, depending on its depth:

Aquarium Lighting

Picture of the penetrability of light in the thickness of water:

Aquarium Lighting

The color catalog of Osram products in .PDF format:
[ The color catalog of Osram products in the format ] [ The color catalog of Osram products in the format ]

Spectral characteristics of LL from the manufacturer Osram:

Indices of color marking LL:

Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting

LL compatibility and technical specifications for electronic ballast for size T5 from Osram:

Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting

The main producers of non-specialized (or non-aquatic) lamps, the linear dimensions of main power lamps:

Aquarium Lighting
Aquarium Lighting

The main characteristics of LL size T4 and T5 from the manufacturer Navicator:

Possible malfunctions of the light bulb:

Aquarium Lighting
Aquarium Lighting

Characteristics of the light bulb from DENERLLE:

Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting

Characteristics of lamps from Hagen:

Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting
Aquarium Lighting

Here are catalogs for lumlams 2007 and 2009/2010, as well as a catalog for special lamps for aqua and terra from Sylvania:

Photo of aquariums and the arrangement of lighting lamps:

01_FloraSet 02_Philips965 02_sp_Philips965 03_Philips950 03_sp_Philips950
01_FloraSet.jpg 02_Philips965.jpg 02_sp_Philips965.jpg 03_Philips950.jpg 03_sp_Philips950.jpg
04_Philips940 04_sp_Philips940 05_Philips930 05_sp_Philips930 06_PhilipsAquarelle
04_Philips940.jpg 04_sp_Philips940.jpg 05_Philips930.jpg 05_sp_Philips930.jpg 06_PhilipsAquarelle.jpg
06_sp_PhilipsAquarelle 07_Philips840 07_sp_Philips840 08_Philips830 08_sp_Philips830
06_sp_PhilipsAquarelle.jpg 07_Philips840.jpg 07_sp_Philips840.jpg 08_Philips830.jpg 08_sp_Philips830.jpg
09_Philips827 09_sp_Philips827 10_WarmWhite 10_sp_WarmWhite 11_SylvaniaAquastar
09_Philips827.jpg 09_sp_Philips827.jpg 10_WarmWhite.jpg 10_sp_WarmWhite.jpg 11_SylvaniaAquastar.jpg
11_sp_SylvaniaAquastar 12_SylvaniaGroLux 12_sp_SylvaniaGroLux 13_AiMBioLux 13_sp_AiMBioLux
11_sp_SylvaniaAquastar.jpg 12_SylvaniaGroLux.jpg 12_sp_SylvaniaGroLux.jpg 13_AiMBioLux.jpg 13_sp_AiMBioLux.jpg
14_AiMDayHiGlow 14_sp_AiMDayHiGlow 15_ArcadiaTropical 15_sp_ArcadiaTropical 16_ArcadiaFreshwater
14_AiMDayHiGlow.jpg 14_sp_AiMDayHiGlow.jpg 15_ArcadiaTropical.jpg 15_sp_ArcadiaTropical.jpg 16_ArcadiaFreshwater.jpg
16_sp_ArcadiaFreshwater 17_ArcadiaMarineWhite 17_sp_ArcadiaMarineWhite 18_HagenMarineGlo 18_sp_HagenMarineGlo
16_sp_ArcadiaFreshwater.jpg 17_ArcadiaMarineWhite.jpg 17_sp_ArcadiaMarineWhite.jpg 18_HagenMarineGlo.jpg 18_sp_HagenMarineGlo.jpg
19_HagenFloraGlo 19_sp_HagenFloraGlo 20_HagenPowerGlo 20_sp_HagenPowerGlo 21_HagenAquaGlo
19_HagenFloraGlo.jpg 19_sp_HagenFloraGlo.jpg 20_HagenPowerGlo.jpg 20_sp_HagenPowerGlo.jpg 21_HagenAquaGlo.jpg
21_sp_HagenAquaGlo 22_HagenLifeGlo 22_sp_HagenLifeGlo 23_HagenSunGlo 23_sp_HagenSunGlo
21_sp_HagenAquaGlo.jpg 22_HagenLifeGlo.jpg 22_sp_HagenLifeGlo.jpg 23_HagenSunGlo.jpg 23_sp_HagenSunGlo.jpg
24_FreshwaterMarine 25_FreshwaterTropical 26_AquaGloSunGlo 27_AquaGloLifeGlo 28_FloraGloSunGlo
24_FreshwaterMarine.jpg 25_FreshwaterTropical.jpg 26_AquaGloSunGlo.jpg 27_AquaGloLifeGlo.jpg 28_FloraGloSunGlo.jpg
29_FloraGloLifeGlo 30_PowerGloLifeGlo 31_PowerGloMarineGlo 32_GroLuxAquastar 33_BioLuxDayHiGlow
29_FloraGloLifeGlo.jpg 30_PowerGloLifeGlo.jpg 31_PowerGloMarineGlo.jpg 32_GroLuxAquastar.jpg 33_BioLuxDayHiGlow.jpg
34_965MarineGlo 35_Aquastar940 36_Aquastar930 37_950940 38_SolarUltraTropic
34_965MarineGlo.jpg 35_Aquastar940.jpg 36_Aquastar930.jpg 37_950940.jpg 38_SolarUltraTropic.jpg
39_SolarUltraNatur 40_SolarUltraMarinDay 41_SUTropicSUNatur 42_SUNaturSUMarinDay 43_Halogeeni
39_SolarUltraNatur.jpg 40_SolarUltraMarinDay.jpg 41_SUTropicSUNatur.jpg 42_SUNaturSUMarinDay.jpg 43_Halogeeni.jpg
44_HPLN80W 45_Philips942HQI 46_AqualineCWHQI 47_AqualineDWHQI 48_OsramDHQI
44_HPLN80W.jpg 45_Philips942HQI.jpg 46_AqualineCWHQI.jpg 47_AqualineDWHQI.jpg 48_OsramDHQI.jpg
49_OsramWDLHQI 50_Arcadia14KHQI
49_OsramWDLHQI.jpg 50_Arcadia14KHQI.jpg