special
  •  #StandWithUkraine Ukraine flag |
  • ~527390+1080
     Enemy losses on 844th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2020690

КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ

КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ

Имя изобретателя: Поссе Андрей Владимирович 
Имя патентообладателя: Поссе Андрей Владимирович
Адрес для переписки: 
Дата начала действия патента: 1992.04.14 

Область использования: на подстанциях трехфазного напряжения (промышленных, тяговых и входящих в состав энергосистем) для компенсации и регулирования реактивной мощности. Сущность изобретения: компенсатор содержит трехфазный мост с запираемыми вентилями, включенный на реактор, два преобразовательных блока и конденсаторы для ограничения перенапряжений. Каждый преобразовательный блок содержит две группы из трех запираемых вентилей и реактор между ними в ветви постоянного тока. Одна группа вентилей имеет угол регулирования 2= 1+, а другая 3= 1-, где 1 - угол регулирования вентилей трехфазного моста, значение угла и соотношение между постоянными токами трехфазного моста и преобразовательных блоков выбираются так, чтобы уменьшить содержание высших гармоник во входном токе компенсатора.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к электроэнергетике и может быть использовано на подстанциях трехфазного напряжения (промышленных, тяговых и входящих в состав энергосистем) для компенсации и регулирования реактивной мощности.

Известны новые компенсаторы реактивной мощности, представляющие собой преобразователи с запираемыми вентилями [1]. Основное их преимущество по сравнению с традиционными тиристорными компенсаторами [2] состоит в том, что они выдают реактивную мощность за счет принудительной коммутации тока в области отрицательных углов регулирования. В результате для выдачи в электрическую сеть реактивной мощности не требуется сооружения конденсаторной батареи соответствующей мощности.

В известных компенсаторах для повышения качества входного тока (для уменьшения содержания в нем высших гармоник) используются преобразователи повышенной фазности 12,18 и 24-фазные [1].

Их недостаток в необходимости применения одного многообмоточного или нескольких двухобмоточных трансформаторов, в невозможности непосредственного подключения преобразователя к шинам трехфазного напряжения.

Наиболее близким к изобретению является компенсатор с одним двухобмоточным трансформатором, трехфазным мостом с запираемыми вентилями и конденсаторами для ограничения перенапряжений, возникающих при принудительных, практически мгновенных коммутациях тока запираемыми вентилями [3].

Недостаток этого компенсатора в низком качестве его входного тока, который содержит высшие гармоники порядка n = =6k ± 1, где k = 1,2,3..., имеет высокий коэффициент искажения синусоидальности (около 30%).

Целью изобретения является повышение качества входного тока компенсатора при сохранении возможности подключения компенсатора непосредственно к шинам без применения трансформатора.

Сущность изобретения состоит в том, что у предлагаемого компенсатора к его входу кроме трехфазного моста присоединены два преобразовательных блока с разнонаправленными запираемыми вентилями. Каждый блок содержит две группы вентилей и реактор между ними в ветви постоянного тока. Одна группа из трех вентилей имеет угол регулирования 2= 1 + , а другая группа 3 = 1 - , где 1 - угол регулирования вентилей трехфазного моста.

Значение угла и соотношение между постоянным током Id1трехфазного моста и постоянным током Id первого и второго блока выбираются так, чтобы уменьшить содержание высших гармоник во входном токе компенсатора. Хорошие результаты получаются при = 24о и Id1 = Idили при = 30ои Id1 = Id.

Добавление двух указанных преобразовательных блоков улучшает качество входного тока компенсатора за счет формирования его из трех сдвинутых по фазе токов моста и обоих блоков и получения в результате трехступенчатого тока, близкого по своей форме к синусоиде. Отметим, что добавление двух преобразовательных блоков приводит к соответствующему увеличению мощности компенсатора и поэтому обеспечивается высокое использование мощности всех запираемых вентилей компенсатора.

 

На фиг. 1 приведена схема предлагаемого компенсатора; на фиг.2 и 3 - графики, показывающие форму токов компенсатора.

К трехфазному входу компенсатора 1 (фиг.1) подключены конденсаторы 2, трехфазный мост 3 с запираемыми вентилями 4 и реактором 5, первый преобразовательный блок 6 с запираемыми вентилями 7 и 8 и реактором 9, а и второй преобразовательный блок 10, отличающийся от блока 6 только обратным направлением вентилей.

Конденсаторы 2 обеспечивают ограничение перенапряжений, возникающих из-за практически мгновенных коммутаций тока запираемыми вентилями. Мощность конденсаторов 2 не превышает 15% от номинальной мощности компенсатора. Конденсаторы 2 могут быть соединены по схеме "звезда" (фиг.1) или по схеме "треугольник".

При работе компенсатора с потреблением реактивной мощности вентили 4 трехфазного моста 3 имеют угол регулирования 1 = 90о- , где угол зависит от потерь мощности в компенсаторе, его значение лежит в пределах 1о. При работе компенсатора с выдачей реактивной мощности угол 1= -90о + .

Группы из трех запираемых вентилей 7 преобразовательных блоков 6 и 10 имеют угол регулирования 2 = 1- , а группы из трех запираемых вентилей 8 этих блоков - угол регулирования 3 = 1+ . Величина угла и соотношение между постоянным током Id трехфазного моста и постоянным током Idпервого и второго преобразовательного блока выбираются такими, чтобы уменьшить содержание высших гармоник в суммарном токе моста и обоих блоков и, как следствие этого, во входном токе компенсатора.

Хорошие результаты в отношении уменьшения высших гармоник во входном токе получаются в двух вариантах: = 24о, Id1 = Id; = 30о, Id1 = Id.

Графики токов компенсатора для первого варианта построены на фиг.2 в предположении, что постоянные токи моста 3 и блоков 6 и 10 полностью сглажены реакторами 5 и 9. Относительно оси времени 11 показан фазный ток i1 на входе моста 3, относительно осей времени 12 и 13 - соответственно фазные токи i2 и i3 вентилей 7 и 8 двух преобразовательных блоков 6 и 10. Построенные временные графики фазных токов i1, i2 и i3относятся к одной и той же фазе. В соответствии с углом регулирования 2 ток i2 опережает ток i1 на угол = 24о.

Аналогично в соответствии с углом регулирования 3 ток i3 отстает от тока i1 на тот же угол = 24о. Относительно оси времени 14 построен график фазного тока i, представляющего собой сумму фазных токов моста и обоих блоков: i = i1 + i2 + i3. Форма тока i значительно ближе к синусоиде, чем форма тока i1 трехфазного моста.

Входной ток компенсатора содержит две составляющие: ток преобразователей i и сравнительно малый ток конденсатора 2, поэтому о качестве входного тока можно судить по качеству тока преобразователей i.

Ток преобразователей i содержит первую гармонику i(1) и высшие гармоники i(n). Первая гармоника i(1) показана на фиг.2, ее действующее значение

При работе компенсатора с углом регулирования трехфазного моста -90о первая гармоника i(1) тока преобразователей опережает соответствующее фазное напряжение сети U на угол 90о, как это показано на фиг.2. Компенсатор при этом выдает в электрическую сеть, к которой он присоединен, реактивную мощность. При 1 90о первая гармоника i1 тока преобразователей отстает на такой же угол от напряжения и компенсатор потребляет реактивную мощность, величина которой (выдаваемой и потребляемой) регулируется малым изменением углов регулирования вентилей, что приводит к изменению токов Id1 и Id.

Относительное значение каждой высшей гармоники порядка n в токе преобразователей i в рассматриваемом варианте, когда Id1 = Id и = 24о(фиг.2), определяется по формуле

Результаты расчета I(n)* для первых восьми высших гармоник, содержащихся в токах i1, i2 и i3, приведены в таблице. Для сравнения в ней же указаны известные значения I(n)* для тока i1 трехфазного моста.

Данные таблицы характеризуют уменьшение содержания высших гармоник во входном токе предлагаемого компенсатора. При Id1 = Id и = 24о во входном токе предлагаемого компенсатора отсутствуют 5-ая и 25-ая гармоники, остальные высшие гармоники уменьшены. Для улучшения качества входного тока особенно существенно исключение 5-ой гармоники и значительное уменьшение величины 7-ой и 11-ой гармоник. Коэффициент искажения синусоидальности тока i около 10%, примерно в 3 раза меньше, чем для тока i1.

График тока преобразователей i для второго варианта его формирования, когда Id1 = Id и = 30о, построен на фиг.3. Получилась известная классическая форма входного тока 12-фазного преобразователя. Этот ток i содержит первую гармонику и высшие гармоники порядка n = 12k ± 1, где k = 1,2,3, . .. В нем отсутствуют гармоники, для которых n = 5, 7,17, 19... Относительные значения оставшихся высших гармоник (n =11,13,23,25...) такие же, как в токе i1 трехфазного моста (см.таблицу). Коэффициент искажения синусоидальности тока i около 13%.

Таким образом, оба варианта дают хорошие результаты по уменьшению во входном токе компенсатора высших гармоник и, как следствие этого, по повышению его качества.

Могут быть применены и другие варианты формирования трехступенчатого тока преобразователей i. Так, например, для исключения в нем 7-ой гармоники следует при Id1= Id установить угол = 17,1о. В этом варианте относительные значения 5-ой и 11-ой гармоник равны соответственно 7,9% и 3,1%, коэффициент искажения синусоидальности тока около 13%.

Выбор того или другого варианта формирования трехступенчатого тока (соотношения между Id1 и Id и величины угла ) зависит от конкретных параметров электрической сети, к которой подключается компенсатор (прежде всего от частотной характеристики ее реактивного сопротивления) и от требований к качеству входного тока компенсатора.

ФОРМУЛА ИЗОБРЕТЕНИЯ

КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ, содержащий трехфазный мост с запираемыми вентилями, реактор, включенный между полюсами моста, и конденсаторы, подключенные к трехфазному входу компенсатора по схеме "звезда" или "треугольник", отличающийся тем, что к входу компенсатора дополнительно присоединены два преобразовательных блока с разнонаправленными запираемыми вентилями, каждый блок содержит две группы из трех запираемых вентилей и реактор между ними в ветви постоянного тока, первая и вторая группы вентилей имеют углы регулирования

2 = 1 + и 3 = 1 - ,

где

1 - угол регулирования вентилей трехфазного моста,

а угол выбирается в пределах 17,1o 30o при условии соотношения



где - постоянный ток трехфазного моста;

Id - постоянный ток преобразовательных блоков.

Версия для печати
Дата публикации 15.02.2007гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018