special
  •  #StandWithUkraine Ukraine flag |
  • ~493690+1400
     Enemy losses on 817th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ЭКСПЕРИМЕНТАЛЬНОЕ ПОДТВЕРЖДЕНИЕ СВЕРХПРОВОДИМОСТИ
ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ

Физика. Эксперименты в физике.

Добро пожаловать на форум

  Согласно классической теории сверхпроводящее состояние в металлах, сплавах и т.п. возникает благодаря образованию куперовских пар. Куперовские пары образуются в результате обмена электронов с противоположными спинами виртуальными фононами при температуре ниже или равной определенному значению, называемой критической температурой (ТК). Исходя из теории Бардина-Купера-Шриффера (БКШ), критическая температура приблизительно определяется по формуле:

где:

-дебаевская температура,

– постоянная, пропорциональная силе притяжения между электронами.

  Оценка максимальной критической температуры в "обычном" сверхпроводнике дает максимальное значение ТК = 50оК. Поэтом у в 60-е годы появились различные теоретические гипотезы, позволяющие поднять критическую температуру до комнатной (300 оК) и выше. Это гипотезы Литта, Гинзбурга–Киржница, Гейликмана.Автор данной работы занимался разработкой конструкции и технологии изготовления сэндвичей диэлектрик-металл-диэлектрик (Д-М-Д) для гипотезы Гинзбурга-Киржница. Согласно этой гипотезе [1] в тонких слоях металла, окруженных диэлектриком возможно образование куперовских пар через взаимодействие с экситонами, находящимися в диэлектрике. На рис. 1 приведен механизм образования куперовских пар. Оценка критической температуры для экситонного механизма дает значения для максимальной критической температуры порядка 300 оК.

Рис.1 Сэндвич диэлектрик-металл-диэлектрик

  Основные требования к структуре: металлическая пленка должна иметь толщину 10-30 Å, а диэлектрик должен прилегать без малейших зазоров.

  Исследуемые образцы представляли собой сложную слоисто-сетчатую структуру, состоящую из структур Д-М-Д и металл-диэлектрик-металл (М-Д-М) с различным сочетанием толщин металла и диэлектрика.

  Было изготовлено множество вариантов таких структур, но нижеприведенные результаты исследований наблюдались на шести образцах, изготовленных по определенной технологии и определенным сочетанием толщин металла и диэлектрика от 10 Å до 100 Å.

  Когда на образец подавалось переменное напряжение, то на экране осциллографа появлялся эллипс (рис. 2).Такая картина на экране осциллографа может наблюдаться, если структуры, к которым приложено переменное напряжение, будут излучать с той же частотой.

Рис.2. Фотография осциллограммы, когда к образцу приложено переменное напряжение.

  Аналогичным явлением обладают структуры сверхпроводник-изолятор-сверхпроводник (S–I-S), и этот эффект называется «нестационарный эффект Джезефсона для переменного напряжения».

  Когда к исследуемому образцу подключался источник постоянного напряжения без подачи смещения, то в цепи наблюдался электрический ток, причём его направление совпадало с полярностью источника питания. Аналогичным эффектом [2] обладают структуры, и он называется "стационарный эффект Джезефсона на постоянном токе".

  При снятии – A характеристик образцов на них наблюдается гистерезис. Согласно работе [3] аналогичным эффектом обладают структуры S–I–S, причём ширина гистерезиса уменьшается с ростом температуры, а при Тк гистерезис совсем исчезает.

  На рис. 3 показана зависимость ширины гистерезиса от температуры.

  Из фотографий осциллограмм видно, что ширина гистерезиса уменьшается с ростом температуры, и ориентировочно, при Т = 350-370 оС гистерезис исчезает.

  Образцы больше 300 оС не нагревались, поскольку в них начинались необратимые структурные изменения. На рис. 4а представлена осциллограмма - A характеристик образца неосвещенного подсветкой от микроскопа. На рис. 4б представлена осциллограмма того же образца, но освещенного подсветкой от микроскопа. Из осциллограмм видно сильную зависимость U характеристик от освещенности. Это подтверждает экситонный механизм сверхпроводимости, поскольку фотоны способствуют образованию экситонов в диэлектрике.

Рис.3. Температурная зависимость петли гистерезиса: а) Т = -196 оС; б)  Т = 20 оС; в) Т = 300 оС.

Рис.4. ВAХ образца: а) без подсветки; б) с подсветкой

  Согласно работе [2] на рис. 5 представлены типичные U-A характеристики образцов S–I–S. Если сравнить ВАХ рис. 4 и ВАХ на рис. 5, то можно утверждать, эти ВАХ принадлежат одному и тому же явлению – одночастотному туннелированию в структурах S–I–S.

Рис.5. ВАХ структур S-I-S.

  Исходя из проведённых исследований, согласно[3], можно сделать вывод, что наблюдаемые эффекты являются следствием того, что металл в образцах находятся в состоянии сверхпроводимости.

Литература

  • Гинзбург В. Л., Киржниц Д. А. Проблема высокотемпературной сверхпроводимости. – М.: Наука, 1977. – 400 с.
  • Солимар Л. Туннельный эффект в сверхпроводниках. – М.: Мир, 1974. – 428 с.
  • Буккель В. Сверхпроводимость.– М.: Мир, 1975. – 366 с.

Версия для печати
P.S. Материал защищён.
Дата публикации 25.01.2004гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018